### Quiz 1: Term Similarity Using Cosine Similarity **Concept:** Term similarity is measured by the cosine of the angle between term vectors. For vectors $\mathbf{T_1}, \mathbf{T_2}, \mathbf{T_3}$: $$ \cos(\theta) = \frac{\mathbf{T_1} \cdot \mathbf{T_i}}{|\mathbf{T_1}| \, |\mathbf{T_i}|}, \quad i = 2,3 $$ Term 1 is more similar to Term 2 than Term 3 if: $$ \cos(\theta_{1,2}) > \cos(\theta_{1,3}) $$ **Example:** $\mathbf{T_1} = (1,2), \mathbf{T_2} = (2,4), \mathbf{T_3} = (1,-1)$ $$ \cos(\theta_{1,2}) = 1, \quad \cos(\theta_{1,3}) \approx -0.32 $$ So Term 1 is closer to Term 2. ### Quiz 2: Special Collection of Documents A "special collection" can only be made using all four columns of the matrix. This means if the columns are $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_4$, then any document $\mathbf{d}$ in this collection is: $$ \mathbf{d} = a_1 \mathbf{c}_1 + a_2 \mathbf{c}_2 + a_3 \mathbf{c}_3 + a_4 \mathbf{c}_4 $$ No subset of fewer columns can make this document, so the columns are linearly independent. The "special collection" is just the span of all four columns. ### Quiz 3: Columns are Linearly Independent **Concept:** A set of columns is linearly independent if no column can be written as a combination of the others. If a matrix has columns $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$, they are independent if: $$ a_1 \mathbf{c}_1 + a_2 \mathbf{c}_2 + \dots + a_n \mathbf{c}_n = 0 \implies a_1 = a_2 = \dots = a_n = 0 $$ **Example:** Matrix with columns: $$ \mathbf{c}_1 = \begin{bmatrix}1\\0\end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix}0\\1\end{bmatrix} $$ No combination of $\mathbf{c}_1$ and $\mathbf{c}_2$ gives the zero vector unless both coefficients are 0, so they are linearly independent. ### Quiz 4: Invertible Linear Transformation **Concept:** A matrix represents an invertible linear transformation if it does not reduce the dimension of the space it acts on. For a 4×4 matrix **M**, it is invertible if: $$ \det(M) \neq 0 $$ This means it does **not squash** a 4D vector into a lower-dimensional space. **Example:** Matrix $$ M = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} $$ is invertible because $\det(M) = 1 \neq 0$. No 4D vector gets collapsed into 3D. ### Quiz 5: Determinant Changes Sign **Concept:** Subtracting a constant from all elements of a matrix can change the sign of its determinant. For matrix **M₃**, we subtracted 3 from every element: $$ M_3 = M - 3J $$ where **J** is a matrix of ones. This can flip the sign of the determinant. **Example (2×2):** Let $$ A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad \det(A) = 3 $$ Subtract 1 from every element: $$ A' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \det(A') = 1 $$ Subtract 2 from every element: $$ A'' = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad \det(A'') = -1 $$ So the determinant can indeed become negative after subtracting a constant. ### Quiz 6: Inverse Matrix Exists **Concept:** A matrix **B** exists such that: $$ MB = I \quad \text{and} \quad BM = I $$ where **I** is the identity matrix. This means **B is the inverse of M**. **Example (2×2):** Let $$ M = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} $$ Then: $$ MB = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I $$ $$ BM = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I $$ So **B is the inverse of M**, and both products give the identity. ### Quiz 7: Columns of M₃ are Linearly Independent **Concept:** Columns are linearly independent if no column can be written as a combination of the others. For matrix **M₃** with columns $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_4$: $$ a_1 \mathbf{c}_1 + a_2 \mathbf{c}_2 + a_3 \mathbf{c}_3 + a_4 \mathbf{c}_4 = 0 \implies a_1 = a_2 = a_3 = a_4 = 0 $$ **Example (2×2):** $$ \mathbf{c}_1 = \begin{bmatrix}1\\0\end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix}0\\1\end{bmatrix} $$ No combination of $\mathbf{c}_1$ and $\mathbf{c}_2$ gives the zero vector unless both coefficients are 0, so the columns are linearly independent. ### Quiz 8: Creating M₃ from M **Concept:** M₃ can be created from M using basic matrix operations like subtraction and scalar multiplication. One common method is using the all-ones matrix **J**: $$ M_3 = M - 3J $$ where **J** has the same size as M and every entry is 1. **Example (2×2):** Let $$ M = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}, \quad J = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $$ Then: $$ M_3 = M - 3J = \begin{bmatrix} 4-3 & 5-3 \\ 6-3 & 7-3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $$ So M₃ is created from M using subtraction.