# DEEP-PLANT ![](https://i.imgur.com/bUUaWaP.jpg) ## Configurations ```bash= args['NUM_WORKERS'] = 4 args['EPOCHES'] = 50 args['BATCH_SIZE'] = 64 args['PATIENCE'] = 5 args['VALID_RATIO'] = .2 args['LR'] = 1e-2 args['MIN_LR'] = 1e-5 args['L1_ratio'] = 1e-4 args['L2_ratio'] = 1e-3 args['CLIPPING'] = .9 args['W_DECAY'] = .9 ``` ## Data Augmentation ```python= transform = transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomVerticalFlip(p=0.3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ``` 這種方式對於單調的資料集來說會造成嚴重的overfitting, 體現於大安森林公園的資料集合,配置應該要隨著資料而改變。 ## Save results in Kaggle environment ```python= import shutil shutil.make_archive('results', 'zip', '/kaggle/working') ``` ## Pretrained model for daanForestPark dataset | Net | pameters_n | size(MB) | accuracy | | -------- | -------- | -------- | -------- | | resNet18 |11,220,117 |42.8 | .897| | googleNet |5,687,029 |21.69 | .849| |resnext50_32x4d|23,154,069 |88.33 | .922| |wide_resnet50_2| 67,008,405|255.62 | .853| |shufflenet_v2_x1_0| 1,340,729 | 0.57 |.962| ## DaanForestPark Dataset * 68 categories * 11,140 shots ### Problems #### Overfitting 起因可能是照片同種相似度太高,類別過少,資料量不足 為了解決過擬合的問題嘗試的方法: 1. 延伸訓練時間(decrease learning rate) 2. 加入 regularization 3. 提昇 regularization 的權重 4. 將 train/valid 獨立分開 5. 採用不同的 augmentation transforms #### Normalize的差別 在測試模型的泛用性之前,先要理解讓模型知道某種植物的 input 為何,以 rose 為例子, 若訓練集合和測試集合相差甚遠, 很有可能造成難以辨識的情形 ![](https://i.imgur.com/ROfxIhp.jpg) 1. 沒有做Normalize: 以 rose 為例子,我輸入 extra Data 的 rose 當成 input ,其中 rose 在大安森林公園的 dataset 也存在, 我的輸入為 192x192 的 rose 照片如下: ![](https://i.imgur.com/6wKaz2C.png) ``` the top 1 prediction is 矮牽牛, prob is 1.000 the top 2 prediction is 野菊花, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 0.999 the top 2 prediction is 矮牽牛, prob is 0.001 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 兩色金雞菊, prob is 1.000 the top 2 prediction is 野菊花, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 矮牽牛, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 兩色金雞菊, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 矮牽牛, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ the top 1 prediction is 野菊花, prob is 1.000 the top 2 prediction is 三色堇, prob is 0.000 the top 3 prediction is 三白草, prob is 0.000 ------------------------------ ``` 2. 同樣的 data 做 Normalize ![](https://i.imgur.com/8RxuZFg.png) ``` the top 1 prediction is 皋月杜鵑, prob is 0.655 the top 2 prediction is 四季秋海棠, prob is 0.169 the top 3 prediction is 桃金孃, prob is 0.084 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.926 the top 2 prediction is 平戶杜鵑, prob is 0.032 the top 3 prediction is 著生杜鵑, prob is 0.023 ------------------------------ the top 1 prediction is 使君子, prob is 0.733 the top 2 prediction is 仙丹花, prob is 0.143 the top 3 prediction is 孤挺花, prob is 0.069 ------------------------------ the top 1 prediction is 台灣金絲桃, prob is 0.264 the top 2 prediction is 玫瑰, prob is 0.263 the top 3 prediction is 蔓花生, prob is 0.131 ------------------------------ the top 1 prediction is 軟枝黃蟬, prob is 0.215 the top 2 prediction is 孤挺花, prob is 0.124 the top 3 prediction is 台灣萍蓬草, prob is 0.116 ------------------------------ the top 1 prediction is 蜀葵, prob is 0.439 the top 2 prediction is 翠蘆莉, prob is 0.367 the top 3 prediction is 含羞草, prob is 0.035 ------------------------------ the top 1 prediction is 矮牽牛, prob is 0.534 the top 2 prediction is 翠蘆莉, prob is 0.457 the top 3 prediction is 非洲鳳仙花, prob is 0.006 ------------------------------ the top 1 prediction is 阿勃勒, prob is 0.568 the top 2 prediction is 著生杜鵑, prob is 0.332 the top 3 prediction is 兩色金雞菊, prob is 0.050 ------------------------------ the top 1 prediction is 四季秋海棠, prob is 0.841 the top 2 prediction is 蜀葵, prob is 0.086 the top 3 prediction is 天竺葵, prob is 0.033 ------------------------------ the top 1 prediction is 南美蟛蜞菊, prob is 0.560 the top 2 prediction is 兩色金雞菊, prob is 0.124 the top 3 prediction is 軟枝黃蟬, prob is 0.115 ------------------------------ the top 1 prediction is 使君子, prob is 0.683 the top 2 prediction is 著生杜鵑, prob is 0.262 the top 3 prediction is 厚皮香, prob is 0.023 ------------------------------ the top 1 prediction is 金絲桃, prob is 0.410 the top 2 prediction is 平戶杜鵑, prob is 0.243 the top 3 prediction is 瑪格麗特, prob is 0.147 ------------------------------ the top 1 prediction is 著生杜鵑, prob is 0.747 the top 2 prediction is 孤挺花, prob is 0.101 the top 3 prediction is 九重葛, prob is 0.051 ------------------------------ the top 1 prediction is 槭葉牽牛, prob is 0.434 the top 2 prediction is 杜鵑花仙子, prob is 0.259 the top 3 prediction is 矮牽牛, prob is 0.104 ------------------------------ the top 1 prediction is 平戶杜鵑, prob is 0.144 the top 2 prediction is 金露花, prob is 0.125 the top 3 prediction is 軟枝黃蟬, prob is 0.118 ------------------------------ the top 1 prediction is 著生杜鵑, prob is 0.846 the top 2 prediction is 玫瑰, prob is 0.056 the top 3 prediction is 月桃, prob is 0.031 ------------------------------ ``` 3. 兩者圖片差別 ![](https://i.imgur.com/6wKaz2C.png) ![](https://i.imgur.com/8RxuZFg.png) #### Size 的差別 統一使用normalize的data,原因是經過normalize模型才能正確做分類 1. 192x192 ![](https://i.imgur.com/8yCyPaz.png) > 猜中 0 次 2. 224x224 ![](https://i.imgur.com/xvYHb2h.png) > 猜中 4 次 > top.2 0次 ``` the top 1 prediction is 槭葉牽牛, prob is 0.977 the top 2 prediction is 皋月杜鵑, prob is 0.009 the top 3 prediction is 矮牽牛, prob is 0.009 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.620 the top 2 prediction is 平戶杜鵑, prob is 0.314 the top 3 prediction is 著生杜鵑, prob is 0.035 ------------------------------ the top 1 prediction is 平戶杜鵑, prob is 0.957 the top 2 prediction is 野薑花, prob is 0.026 the top 3 prediction is 著生杜鵑, prob is 0.011 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.837 the top 2 prediction is 平戶杜鵑, prob is 0.111 the top 3 prediction is 著生杜鵑, prob is 0.028 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.705 the top 2 prediction is 野薑花, prob is 0.213 the top 3 prediction is 南美蟛蜞菊, prob is 0.041 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.872 the top 2 prediction is 非洲鳳仙花, prob is 0.065 the top 3 prediction is 桃金孃, prob is 0.050 ------------------------------ the top 1 prediction is 使君子, prob is 0.735 the top 2 prediction is 孤挺花, prob is 0.144 the top 3 prediction is 南美朱槿, prob is 0.052 ------------------------------ the top 1 prediction is 孤挺花, prob is 0.962 the top 2 prediction is 阿勃勒, prob is 0.009 the top 3 prediction is 著生杜鵑, prob is 0.008 ------------------------------ the top 1 prediction is 阿勃勒, prob is 0.956 the top 2 prediction is 瑪格麗特, prob is 0.025 the top 3 prediction is 蜀葵, prob is 0.006 ------------------------------ the top 1 prediction is 台灣金絲桃, prob is 0.478 the top 2 prediction is 南美蟛蜞菊, prob is 0.447 the top 3 prediction is 台灣萍蓬草, prob is 0.027 ------------------------------ the top 1 prediction is 四季秋海棠, prob is 0.787 the top 2 prediction is 蜀葵, prob is 0.095 the top 3 prediction is 平戶杜鵑, prob is 0.091 ------------------------------ the top 1 prediction is 矮牽牛, prob is 0.619 the top 2 prediction is 翠蘆莉, prob is 0.371 the top 3 prediction is 非洲鳳仙花, prob is 0.007 ------------------------------ the top 1 prediction is 野薑花, prob is 0.969 the top 2 prediction is 平戶杜鵑, prob is 0.021 the top 3 prediction is 玫瑰, prob is 0.003 ------------------------------ the top 1 prediction is 阿勃勒, prob is 0.909 the top 2 prediction is 蜀葵, prob is 0.024 the top 3 prediction is 艷紫荊, prob is 0.018 ------------------------------ the top 1 prediction is 軟枝黃蟬, prob is 0.247 the top 2 prediction is 野薑花, prob is 0.132 the top 3 prediction is 瑪格麗特, prob is 0.115 ------------------------------ the top 1 prediction is 金絲桃, prob is 0.224 the top 2 prediction is 蜀葵, prob is 0.211 the top 3 prediction is 平戶杜鵑, prob is 0.202 ------------------------------ ``` 3. 311x311 ![](https://i.imgur.com/E8rsjHW.png) > 猜中 4 次 > top.2 2次 ``` the top 1 prediction is 非洲鳳仙花, prob is 0.912 the top 2 prediction is 孤挺花, prob is 0.082 the top 3 prediction is 玫瑰, prob is 0.002 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.828 the top 2 prediction is 野薑花, prob is 0.100 the top 3 prediction is 南美蟛蜞菊, prob is 0.033 ------------------------------ the top 1 prediction is 槭葉牽牛, prob is 0.973 the top 2 prediction is 皋月杜鵑, prob is 0.017 the top 3 prediction is 矮牽牛, prob is 0.004 ------------------------------ the top 1 prediction is 皋月杜鵑, prob is 0.193 the top 2 prediction is 桃金孃, prob is 0.148 the top 3 prediction is 蜀葵, prob is 0.136 ------------------------------ the top 1 prediction is 皋月杜鵑, prob is 0.888 the top 2 prediction is 玫瑰, prob is 0.072 the top 3 prediction is 四季秋海棠, prob is 0.037 ------------------------------ the top 1 prediction is 金魚草, prob is 0.724 the top 2 prediction is 玫瑰, prob is 0.083 the top 3 prediction is 天竺葵, prob is 0.054 ------------------------------ the top 1 prediction is 南美蟛蜞菊, prob is 0.507 the top 2 prediction is 台灣金絲桃, prob is 0.416 the top 3 prediction is 台灣萍蓬草, prob is 0.022 ------------------------------ the top 1 prediction is 阿勃勒, prob is 0.972 the top 2 prediction is 瑪格麗特, prob is 0.014 the top 3 prediction is 蜀葵, prob is 0.005 ------------------------------ the top 1 prediction is 矮牽牛, prob is 0.571 the top 2 prediction is 翠蘆莉, prob is 0.420 the top 3 prediction is 非洲鳳仙花, prob is 0.007 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.871 the top 2 prediction is 非洲鳳仙花, prob is 0.048 the top 3 prediction is 桃金孃, prob is 0.046 ------------------------------ the top 1 prediction is 阿勃勒, prob is 0.836 the top 2 prediction is 蜀葵, prob is 0.037 the top 3 prediction is 艷紫荊, prob is 0.037 ------------------------------ the top 1 prediction is 孤挺花, prob is 0.884 the top 2 prediction is 軟枝黃蟬, prob is 0.041 the top 3 prediction is 月桃, prob is 0.028 ------------------------------ the top 1 prediction is 孤挺花, prob is 0.487 the top 2 prediction is 仙丹花, prob is 0.395 the top 3 prediction is 玫瑰, prob is 0.036 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.333 the top 2 prediction is 皋月杜鵑, prob is 0.296 the top 3 prediction is 著生杜鵑, prob is 0.188 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.574 the top 2 prediction is 平戶杜鵑, prob is 0.346 the top 3 prediction is 著生杜鵑, prob is 0.037 ------------------------------ the top 1 prediction is 著生杜鵑, prob is 0.581 the top 2 prediction is 平戶杜鵑, prob is 0.271 the top 3 prediction is 石竹, prob is 0.020 ------------------------------ ``` 4. 512x512 ![](https://i.imgur.com/sAns8u0.png) > 猜中 1 次 > top.2 3次 ``` the top 1 prediction is 著生杜鵑, prob is 0.530 the top 2 prediction is 孤挺花, prob is 0.383 the top 3 prediction is 南美朱槿, prob is 0.055 ------------------------------ the top 1 prediction is 著生杜鵑, prob is 0.771 the top 2 prediction is 兩色金雞菊, prob is 0.172 the top 3 prediction is 仙丹花, prob is 0.034 ------------------------------ the top 1 prediction is 槭葉牽牛, prob is 0.978 the top 2 prediction is 皋月杜鵑, prob is 0.009 the top 3 prediction is 矮牽牛, prob is 0.007 ------------------------------ the top 1 prediction is 台灣蛇莓, prob is 0.324 the top 2 prediction is 天竺葵, prob is 0.261 the top 3 prediction is 平戶杜鵑, prob is 0.245 ------------------------------ the top 1 prediction is 杜鵑花仙子, prob is 0.419 the top 2 prediction is 槭葉牽牛, prob is 0.288 the top 3 prediction is 矮牽牛, prob is 0.104 ------------------------------ the top 1 prediction is 皋月杜鵑, prob is 0.936 the top 2 prediction is 玫瑰, prob is 0.047 the top 3 prediction is 四季秋海棠, prob is 0.015 ------------------------------ the top 1 prediction is 使君子, prob is 0.783 the top 2 prediction is 孤挺花, prob is 0.134 the top 3 prediction is 南美朱槿, prob is 0.043 ------------------------------ the top 1 prediction is 孤挺花, prob is 0.635 the top 2 prediction is 著生杜鵑, prob is 0.268 the top 3 prediction is 使君子, prob is 0.088 ------------------------------ the top 1 prediction is 金魚草, prob is 0.536 the top 2 prediction is 玫瑰, prob is 0.189 the top 3 prediction is 久留米杜鵑, prob is 0.079 ------------------------------ the top 1 prediction is 艷紫荊, prob is 0.449 the top 2 prediction is 鳳凰木, prob is 0.374 the top 3 prediction is 盾柱木, prob is 0.082 ------------------------------ the top 1 prediction is 平戶杜鵑, prob is 0.796 the top 2 prediction is 玫瑰, prob is 0.151 the top 3 prediction is 野菊花, prob is 0.022 ------------------------------ the top 1 prediction is 天竺葵, prob is 0.478 the top 2 prediction is 四季秋海棠, prob is 0.232 the top 3 prediction is 蜀葵, prob is 0.181 ------------------------------ the top 1 prediction is 著生杜鵑, prob is 0.296 the top 2 prediction is 軟枝黃蟬, prob is 0.152 the top 3 prediction is 野薑花, prob is 0.101 ------------------------------ the top 1 prediction is 杜鵑花仙子, prob is 0.736 the top 2 prediction is 蜀葵, prob is 0.243 the top 3 prediction is 平戶杜鵑, prob is 0.007 ------------------------------ the top 1 prediction is 玫瑰, prob is 0.902 the top 2 prediction is 桃金孃, prob is 0.036 the top 3 prediction is 非洲鳳仙花, prob is 0.034 ------------------------------ the top 1 prediction is 仙丹花, prob is 0.370 the top 2 prediction is 非洲鳳仙花, prob is 0.308 the top 3 prediction is 使君子, prob is 0.246 ------------------------------ ``` ## (Optimal) Extra Dataset ![](https://i.imgur.com/KxBORSq.jpg) | context | url | | -------- | -------- | | flowers | https://www.kaggle.com/rednivrug/flower-recognition-he#10002.jpg | | flowers | https://www.kaggle.com/alxmamaev/flowers-recognition | | flowers | https://www.kaggle.com/msheriey/104-flowers-garden-of-eden | | flowers | https://www.kaggle.com/eswarkamineni/flower-data#image_05088.jpg | | cat and dog | https://www.kaggle.com/tongpython/cat-and-dog | | cat and dog | https://www.kaggle.com/thesherpafromalabama/cats-and-dogs-sentdex-tutorial#10001.jpg | |animal | https://www.kaggle.com/alessiocorrado99/animals10| |apple/banana/orange|https://www.kaggle.com/sriramr/apples-bananas-oranges| |coin|https://www.kaggle.com/wanderdust/coin-images| ||| ### Train individual on an extra dataset https://www.kaggle.com/msheriey/104-flowers-garden-of-eden ### pretrained model adopted * ShuffleNet * AlexNet * EfficientNet * resNet18 | Net | pameters_n | size(MB) | accuracy | | -------- | -------- | -------- | -------- | | AlexNet(class104) |57,429,928 |228.02|.70| | AlexNet(class54) |57,429,928 |228.02|.75| | shuffleNet(class104) |1,308,954 |47.25 |.67| | shuffleNet(class54) |1,308,954 |47.25 |.77| | resNet18(class104) |11,229,864|100.46 |.79| | resNet18(class90) |11,229,864|100.46 |.81| | resNet18(class104) without regularization |11,229,864|100.46 |.81| #### latest model https://github.com/lukemelas/EfficientNet-PyTorch ```python= from efficientnet_pytorch import EfficientNet ``` ### difficulty 1. the number of ground-truth reaches up to 104 species 2. same species has various color, e.g., white/red rose 3. imbalance data ### Improvement 1. add **rotation** augmentation 2. **breakthrough:** decrease the learning rate > from `1e-2 ~ 1e-5` to `1e-4 ~ 1e-7` 3. batch size from 32 to 64 > avoid overfitting ### Experiments wild rose , wild geranium 同類 wallflower petunia 本身的照片難以分辨 columbine lenren_rose 本身的照片難以分辨 daffodil, petunia 做二元分類 (shuffleNet預測daffodil猜petunia) bromelia, frangipani 做二元分類 (shuffleNet預測bromelia猜frangipani) #### 難以辨別:一簇花 ![](https://i.imgur.com/cO1r5Uc.png) > 分錯的那個是 snapdragon,特色是有很多顏色以及一簇一簇的照片 > snapdragon很難用顏色區分,猜測是因為一簇的關係 #### 不明所以的照片 ![](https://i.imgur.com/ZfwJ1rH.png) ![](https://i.imgur.com/5NYKt8f.png) #### 特殊背景色 ![](https://i.imgur.com/ESJ6rwh.png) #### 同種不同色 ![](https://i.imgur.com/ypALHae.png) #### 同類數量稀少或是同類中單張特殊 ![](https://i.imgur.com/pGpf3ty.png) ![](https://i.imgur.com/yNOPCki.png) ![](https://i.imgur.com/tyvnjQS.png) ![](https://i.imgur.com/lzD3W5D.png) > 37張 > 只有一張未開花 > 看不出康乃馨的特色 #### 真的太像了 ![](https://i.imgur.com/ymx3Nh0.png) > 猜測:cyclamen > 答案:common tulip > 就這張照片來說很難辨別是 tulip ![](https://i.imgur.com/A3bW85g.png) > 猜測:bougainvillea > 答案:primula > 就這張照片來說很難辨別是 primula #### 去除 trend <= 0 的資料 (有問題,會將做好的資料去除) trend 如何計算? > 將收集來的precision or recall per epoch 視為timeseries的資料, 計算出每個epoch之間的斜率總和,當總和大於0,代表在訓練過程中有提昇performance,反之則無。 > 例如: `[1,4,-1,1]` 的序列資料,經過計算後得到 `[Nan,3,-5,2]`,加總後得到`0`,代表這個類別的趨勢處於不上不下的狀態。 原始label數量為104個,經過filter剩下54個,幾乎少了50%,驗證在validation set從原先的37%準確率提升到43% ![](https://i.imgur.com/PBfXxkR.png) #### 採用 alexNet (參數變多,導致overfitting) 2020.04.14 - 跑到第17個epoch仍然沒有好轉 2020.04.15 - 更改lr range 有了突破性進展 > 代表不同類別之間其差異非常細微,必須降低微分強度 > 但是也產生一個問題,就是overfitting ![](https://i.imgur.com/Zqjjmam.png) 2020.04.15 - 提昇 regularization loss 影響 > 為了解決overfitting,觀察l2 regularization 的範圍約在200~240之間, 將regularization loss的權重從`1e-3` 調整為 `1e-2` 2020.04.15 - 使用 `albumentations` 試圖產生更diverse的augmentation > 準確率提昇了1% ![](https://i.imgur.com/hkl1khD.png) 2020.04.15 - 調高regularzation的比重, 加入 l1 regularization > 準確率達到70% ```python= args['L1_ratio'] = 1e-4 args['L2_ratio'] = 1e-2 ``` 再進一步調高? ```python= args['L1_ratio'] = 1e-3 args['L2_ratio'] = 1e-2 ``` > 準確率68% ![](https://i.imgur.com/i91kqgX.png) 分析原因: 在模型第二個epoch時大幅降低了val_loss, 模型的複雜度在訓練初期就做了巨大的修正, 之後隨著lr下降對於模型的loss幾乎沒有影響, 可能是ratio設定太大,導致gradient影響不足 改成調整l2 regularization的比重 ```python= args['L1_ratio'] = 1e-4 args['L2_ratio'] = 1e-1 ``` > 準確率69% #### 額外實驗,做梯度裁剪 `[-0.9, +0.9]` 69% #### 改回原先的shuffleNet classes=54 ![](https://i.imgur.com/LKied9x.png) > 這裡說明固定`lr=1e-4`已經可以將準確率提升到`0.66`,代表模型大致可以從data中找到圖片和種類的關聯,透過縮短步長可以從`0.66`到`0.77` ## Is clipping gradient useful ? > Not usually useful | resNet18 | Clipping| non-Clipping | | -------- | -------- | -------- | | accuracy | .783 | .835 | | loss | ? | .492 | ![](https://i.imgur.com/QJZiQBh.png) ![](https://i.imgur.com/dOANIrs.png) ![](https://i.imgur.com/2X0XjGd.png) ![](https://i.imgur.com/Kfl9wlp.png) ## Reference totchvison models: https://pytorch.org/docs/stable/torchvision/models.html torch tensorboard: https://pytorch.org/docs/stable/tensorboard.html confusion matrx: http://martin-mundt.com/tensorboard-figures/ torch tricks: https://zhuanlan.zhihu.com/p/76459295 free GPU memory: https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/discussion/96876 t-sne flower: https://www.kaggle.com/gaborvecsei/plants-t-sne ![](https://i.imgur.com/ui6Ym9I.jpg) ## Transfer learning https://hackmd.io/@allen108108/H1MFrV9WH#Zero-Shot-Translation