## [155\. Min Stack](https://leetcode.com/problems/min-stack/)
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
Implement the `MinStack` class:
- `MinStack()` initializes the stack object.
- `void push(int val)` pushes the element `val` onto the stack.
- `void pop()` removes the element on the top of the stack.
- `int top()` gets the top element of the stack.
- `int getMin()` retrieves the minimum element in the stack.
You must implement a solution with `O(1)` time complexity for each function.
**Example 1:**
**Input**
\["MinStack","push","push","push","getMin","pop","top","getMin"\]
\[\[\],\[-2\],\[0\],\[-3\],\[\],\[\],\[\],\[\]\]
**Output**
\[null,null,null,null,-3,null,0,-2\]
**Explanation**
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top(); // return 0
minStack.getMin(); // return -2
**Constraints:**
- `-231 <= val <= 231 - 1`
- Methods `pop`, `top` and `getMin` operations will always be called on **non-empty** stacks.
- At most `3 * 104` calls will be made to `push`, `pop`, `top`, and `getMin`.
```cpp=
class MinStack {
public:
MinStack() {}
void push(int val) {
s1.push(val);
if(s2.empty() || val <= s2.top()) {
s2.push(val);
}
}
void pop() {
// 如果 s1.top() == 最小值的話
if(s1.top() == s2.top()) {
s2.pop();
}
s1.pop();
}
int top() {
return s1.top();
}
int getMin() {
return s2.top();
}
private:
// 用兩個 stack 存
// s1 -> 一般的 stack
// s2 -> 用來存最小值的 stack
stack<int> s1;
stack<int> s2;
};
/**
* Your MinStack object will be instantiated and called as such:
* MinStack* obj = new MinStack();
* obj->push(val);
* obj->pop();
* int param_3 = obj->top();
* int param_4 = obj->getMin();
*/
```
:::success
- 時間複雜度:$O(1)$
- 空間複雜度:$O(N)$
:::