## [155\. Min Stack](https://leetcode.com/problems/min-stack/) Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. Implement the `MinStack` class: - `MinStack()` initializes the stack object. - `void push(int val)` pushes the element `val` onto the stack. - `void pop()` removes the element on the top of the stack. - `int top()` gets the top element of the stack. - `int getMin()` retrieves the minimum element in the stack. You must implement a solution with `O(1)` time complexity for each function. **Example 1:** **Input** \["MinStack","push","push","push","getMin","pop","top","getMin"\] \[\[\],\[-2\],\[0\],\[-3\],\[\],\[\],\[\],\[\]\] **Output** \[null,null,null,null,-3,null,0,-2\] **Explanation** MinStack minStack = new MinStack(); minStack.push(-2); minStack.push(0); minStack.push(-3); minStack.getMin(); // return -3 minStack.pop(); minStack.top(); // return 0 minStack.getMin(); // return -2 **Constraints:** - `-231 <= val <= 231 - 1` - Methods `pop`, `top` and `getMin` operations will always be called on **non-empty** stacks. - At most `3 * 104` calls will be made to `push`, `pop`, `top`, and `getMin`. ```cpp= class MinStack { public: MinStack() {} void push(int val) { s1.push(val); if(s2.empty() || val <= s2.top()) { s2.push(val); } } void pop() { // 如果 s1.top() == 最小值的話 if(s1.top() == s2.top()) { s2.pop(); } s1.pop(); } int top() { return s1.top(); } int getMin() { return s2.top(); } private: // 用兩個 stack 存 // s1 -> 一般的 stack // s2 -> 用來存最小值的 stack stack<int> s1; stack<int> s2; }; /** * Your MinStack object will be instantiated and called as such: * MinStack* obj = new MinStack(); * obj->push(val); * obj->pop(); * int param_3 = obj->top(); * int param_4 = obj->getMin(); */ ``` :::success - 時間複雜度:$O(1)$ - 空間複雜度:$O(N)$ :::