## [232\. Implement Queue using Stacks](https://leetcode.com/problems/implement-queue-using-stacks/) Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (`push`, `peek`, `pop`, and `empty`). Implement the `MyQueue` class: - `void push(int x)` Pushes element x to the back of the queue. - `int pop()` Removes the element from the front of the queue and returns it. - `int peek()` Returns the element at the front of the queue. - `boolean empty()` Returns `true` if the queue is empty, `false` otherwise. **Notes:** - You must use **only** standard operations of a stack, which means only `push to top`, `peek/pop from top`, `size`, and `is empty` operations are valid. - Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations. **Example 1:** **Input** \["MyQueue", "push", "push", "peek", "pop", "empty"\] \[\[\], \[1\], \[2\], \[\], \[\], \[\]\] **Output** \[null, null, null, 1, 1, false\] **Explanation** MyQueue myQueue = new MyQueue(); myQueue.push(1); // queue is: \[1\] myQueue.push(2); // queue is: \[1, 2\] (leftmost is front of the queue) myQueue.peek(); // return 1 myQueue.pop(); // return 1, queue is \[2\] myQueue.empty(); // return false **Constraints:** - `1 <= x <= 9` - At most `100` calls will be made to `push`, `pop`, `peek`, and `empty`. - All the calls to `pop` and `peek` are valid. 解法:使用兩個 stacks ![](https://leetcode.com/media/original_images/232_queue_using_stacksBPush.png) ```cpp class MyQueue { public: MyQueue() {} void push(int x) { // 後進來的會維持在最上層 // 如果 s1 推了 1, 2, 3,3 會在最上面 s1.push(x); } int pop() { peek(); int temp = s2.top(); s2.pop(); return temp; } int peek() { // s2 用來儲存 s1 的反轉順序,如果 s2 裡面有值,直接回傳 s2.top(); if(!s2.empty()) return s2.top(); // 如果 s1 還有值,將元素丟到 s2 儲存,反轉順序 while(!s1.empty()) { s2.push(s1.top()); s1.pop(); } return s2.top(); } bool empty() { return s1.empty() && s2.empty(); } private: stack<int> s1; // push 進去的元素先裝在這,最後一個元素會維持在最上層 stack<int> s2; // 將 s1 的元素 pop() 到 s2,反轉順序 }; /** * Your MyQueue object will be instantiated and called as such: * MyQueue* obj = new MyQueue(); * obj->push(x); * int param_2 = obj->pop(); * int param_3 = obj->peek(); * bool param_4 = obj->empty(); */ ``` :::success - 時間複雜度:$O(N)$ - 空間複雜度:$O(N)$ :::