# CNNA [NOTES](https://community.deeplearning.ai/t/course-4-lecture-notes/11879) ## Basics ![](https://i.imgur.com/NHlmsIE.png) ![](https://i.imgur.com/Aiaajuk.png) ![](https://i.imgur.com/tFpvu7T.png) ![](https://i.imgur.com/0m0O9p4.png) ## 1 layer CN ![](https://i.imgur.com/mV43EYU.png) ![](https://i.imgur.com/CzxVoYt.png) ![](https://i.imgur.com/3tDxS72.png) ## Pooling No parameters to learn!!!!!!!!!!!!!! ![](https://i.imgur.com/oNi2JDd.png) ![](https://i.imgur.com/GH0VYHe.png) ![](https://i.imgur.com/BWDgWNM.png) ## Neural Network with convolution ![](https://i.imgur.com/4hObICV.png) ![](https://i.imgur.com/aACrETF.png) ![](https://i.imgur.com/abbUcaA.png) ## CNN Networks ### LeNet ![](https://i.imgur.com/OPcCKyB.png) ### AlexNet ![](https://i.imgur.com/K5kpqB6.jpg) ### VGG ![](https://i.imgur.com/DdEJMeO.png) ### ResNet ![](https://i.imgur.com/mg2TL1T.png) ![](https://i.imgur.com/dSPUewl.jpg) ![](https://i.imgur.com/VczQ4c4.png) ### Networks in Networks (1x1 convo) ![](https://i.imgur.com/bksyP3Z.png) ### Inception ![](https://i.imgur.com/r41gocj.png) ![](https://i.imgur.com/FjPQVGq.png) ![](https://i.imgur.com/pKR3VqU.png) ![](https://i.imgur.com/Cge3mqj.png) ### GooleNet ![](https://i.imgur.com/Dk0Ic5O.png) ### MobileNet Less params ![](https://i.imgur.com/DfaPzGW.png) ![](https://i.imgur.com/9GJIyvK.png) ![](https://i.imgur.com/dLM7oeE.png) ### Transfer learning ![](https://i.imgur.com/FHvokSe.png) ### Data augmentation ![](https://i.imgur.com/KDXKjoG.png) ![](https://i.imgur.com/TSQW0tH.png) ## Object Localization ![](https://i.imgur.com/RX0SsVw.png) ![](https://i.imgur.com/6HP6qaP.jpg) ### Landmark Detection ![](https://i.imgur.com/EJisVJx.png) ### Object Detection ![](https://i.imgur.com/UbVqDQC.png) ![](https://i.imgur.com/vWGvN0B.png) #### Conv implementation ![](https://i.imgur.com/J4rd81T.png) ![](https://i.imgur.com/U2Dq68m.jpg) ![](https://i.imgur.com/lIGiGVT.png) ### Bounding Box Prediction ![](https://i.imgur.com/4IVWXSt.png) ![](https://i.imgur.com/oFkf27N.png) ### IOU ![](https://i.imgur.com/5EGDygQ.png) ### Non max Supression clears out multiple pred ![](https://i.imgur.com/FZUOZbf.png) ### Anchor Box ![](https://i.imgur.com/xhC6nxP.png) ![](https://i.imgur.com/lUekyzv.png) ![](https://i.imgur.com/HjUKjWy.png) ### YOLO ![](https://i.imgur.com/B9jN1me.png) ![](https://i.imgur.com/vJxIUbm.png) ![](https://i.imgur.com/QVTou9b.png) ### RCNN Instead of sliding through whole img slide through required area only ![](https://i.imgur.com/wl136tq.png) ![](https://i.imgur.com/hXvsU49.png) ## Semantic Segmentation ![](https://i.imgur.com/wAPpavO.png) ![](https://i.imgur.com/ZC55Ycn.png) U-Net algo is used for segmentation ![](https://i.imgur.com/xK1hFGS.png) ### Transpose Convo ![](https://i.imgur.com/wfulgM2.png) ### UNet low level by skip conn high level by network ![](https://i.imgur.com/5jQ0zmc.png) ![](https://i.imgur.com/5cWpdqW.png) ![](https://i.imgur.com/azc1qw4.png) ## FACE RECOGNITION ![Uploading file..._crw9bt7zi]() ### One shot learning ![Uploading file..._6w0ol3wxj]() ![Uploading file..._rq46224ut]()