--- title: 'Cuda,Yolov8 詳細教學' disqus: hackmd --- Cuda,Yolov8 詳細教學 === [TOC] ## 安裝Anaconda https://www.anaconda.com/download ## 安裝Cuda+Cudnn+PyTorch 1. 查看顯示卡Cuda支援最高版本,在cmd中輸入 ```gherkin= nvidia-smi ```  2. 到 https://pytorch.org/ 下載對應版本,複製底下Command  3. 打開Anaconda,建立新環境,點Open Terminal,將複製內容貼上並執行他   4. 在同樣地方輸入並執行以下內容,安裝yolov8 ``` pip install ultralytics ``` 確認環境建立是否成功 --- 在你的Jupyter Notebook中執行 ```gherkin= import torch torch.cuda.is_available() ``` >確認cuda有正確安裝 ```gherkin= from __future__ import print_function import torch x = torch.rand(5, 3) print(x) ``` > 若成功執行,即成功指派GPU執行 ```gherkin= import ultralytics ultralytics.checks() ``` > 若返回Ture,即安裝Yolov8 開始訓練Yolov8模型,使用自訂訓練集 --- https://github.com/ultralytics/ultralytics ```gherkin= from ultralytics import YOLO # Load a model model = YOLO("yolov8n.yaml") # build a new model from scratch model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) # Use the model model.train(data="coco8.yaml", epochs=3) # train the model metrics = model.val() # evaluate model performance on the validation set path = model.export(format="onnx") # export the model to ONNX format ``` > coco8.yaml改成你的yaml檔的檔案路徑 ``` train: ../train/images val: ../valid/images test: ../test/images nc: 3 names: ['0', '1', '2'] ``` > yaml內容分別為train、val、test的images資料夾位置 > nc為你有幾個label,names為你的label名稱 ## 可調參數 https://docs.ultralytics.com/zh/modes/train/#train-settings https://blog.csdn.net/weixin_45277161/article/details/131047101 ## 測試你的模型 https://docs.ultralytics.com/modes/predict/#inference-sources ```gherkin= from ultralytics import YOLO # Load a model model = YOLO("yolov8n.yaml") # build a new model from scratch model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) # Use the model import cv2 from PIL import Image from ultralytics import YOLO # 加載訓練好的模型 model = YOLO(r"C:\cookie-yolov8\cookie_datasets.v2i.yolov8\training_results\cookies2\weights\best.pt") # 從攝像頭進行預測 #results = model.predict(source=0) # 0 代表使用攝像頭 # 從文件夾中進行預測並顯示結果 results = model.predict(source=r"C:\cookie-yolov8\cookie_datasets.v2i.yolov8\test\images", show=False, save=True, save_dir=r"C:\cookie-yolov8\cookie_datasets.v2i.yolov8\test_result" ) # 這裡 "folder" 需要替換為實際的文件夾路徑 # 從單個 PIL 圖像進行預測並保存結果 # im1 = Image.open("bus.jpg") # results = model.predict(source=im1, save=True) # save=True 表示保存繪製的圖片 # 從單個 ndarray 圖像進行預測並保存結果 # im2 = cv2.imread("bus.jpg") # results = model.predict(source=im2, save=True, save_txt=True) # save_txt=True 表示保存預測的標籤 # 從文件夾中的圖像列表進行預測 #results = model.predict(source=r"C:\cookie-yolov8\cookie_datasets.v2i.yolov8\test\images") # 指定文件夾路徑 # 顯示結果 #result.save(r"C:\cookie-yolov8\cookie_datasets.v2i.yolov8\test_result") ``` ## 恭喜成功!! ###### tags: `yolov8` `cuda`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up