---
title: 'Project documentation template'
disqus: hackmd
---
[TOC]
## 啟用Docker容器
在本機終端上執行此程式
```gherkin=
sudo docker run -it \
--privileged \
--device /dev/gpiochip0 \
--runtime=nvidia \
--device=/dev/video0:/dev/video0 \
--ipc=host \
-v /home/jetson-nano/Desktop:/data \
-e DISPLAY=$DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix \
ultralytics/ultralytics:latest-jetson-jetpack4
```
建立python腳本
---
自行選擇習慣的腳本編輯器,這裡使用nano
```gherkin=
import cv2
from ultralytics import YOLO
import Jetson.GPIO as GPIO
import time
import threading
# Load the YOLOv8 model
model = YOLO("yolov8n.engine")
# Set up GPIO for servo control
GPIO.setmode(GPIO.BCM)
servo_pin = 13
GPIO.setup(servo_pin, GPIO.OUT)
pwm = GPIO.PWM(servo_pin, 50) # 50Hz
pwm.start(0)
# Define duty cycles for 0 and 90 degrees
duty_cycle_90 = 7.5
duty_cycle_0 = 2.5
# Define labels and confidence threshold
labels = ["mouse", "keyboard"]
confidence_threshold = 0.7
# Function to change servo duty cycle
def set_servo_duty_cycle(duty_cycle, duration=2):
pwm.ChangeDutyCycle(duty_cycle)
time.sleep(duration)
# Open the video file
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Could not open webcam.")
exit()
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 tracking on the frame, persisting tracks between frames
try:
results = model.track(frame, persist=True)
except Exception as e:
print(f"Error during tracking: {e}")
break
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Process results and perform actions based on detected labels
for result in results:
for box in result.boxes:
label_index = int(box.cls[0].item()) # Label index
confidence = box.conf[0].item() # Confidence score
# Ensure result.names is accessible
if hasattr(result, 'names') and label_index < len(result.names):
label = result.names[label_index] # Label name
# Trigger servo motor based on label
if label == labels[0] and confidence > confidence_threshold:
threading.Thread(target=set_servo_duty_cycle, args=(duty_cycle_90,)).start()
elif label == labels[1] and confidence > confidence_threshold:
threading.Thread(target=set_servo_duty_cycle, args=(duty_cycle_0,)).start()
# Display the annotated frame
cv2.imshow("YOLOv8 Tracking", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
pwm.stop()
GPIO.cleanup()
```
下載Jetson.GPIO套件
---
```gherkin
apt install Jetson.GPIO
```
```gherkin
Name: Jetson.GPIO
Version: 2.1.6
Summary: A module to control Jetson GPIO channels
Home-page: https://github.com/NVIDIA/jetson-gpio
Author: NVIDIA
Author-email: linux-tegra-bugs@nvidia.com
License: MIT
Location: /usr/local/lib/python3.8/dist-packages
Requires:
Required-by:
```
測試馬達用腳本
```gherkin
import Jetson.GPIO as GPIO
import time
#
GPIO.setmode(GPIO.BCM)
#
servo_pin = 13
#
GPIO.setup(servo_pin, GPIO.OUT)
#
pwm = GPIO.PWM(servo_pin, 50) # 50Hz
#
pwm.start(0)
duty_cycle_90 = 7.5 # 90
duty_cycle_0 = 2.5 # 0
try:
#
time.sleep(1)
pwm.ChangeDutyCycle(duty_cycle_90)
time.sleep(2) #
#
pwm.ChangeDutyCycle(duty_cycle_0)
time.sleep(1) #
finally:
#
pwm.stop()
GPIO.cleanup()
```
設定PWM
```gherkin
sudo /opt/nvidia/jetson-io/jetson-io.py
```