# Trigonometric functions
---
## CAUTION: Radians and Degrees
When you are calculating trigonometric using a calculator or software, make sure you are using degrees and not radians
---
## Right Triangles
Can use Sine, Cosine, and Tangent to determine the proportions of sides in right triangles

---
## Circles
Can use Sine, and Cosine to determine the x and y values on a circle

Note:
We will start by explaining sin an cos with circles and then go back on how to use them in right triangles
---

$x=\cos(\theta)$
$y=\sin(\theta)$
Note:
Finding the x and y components of a circle
---

$x^2 + y^2 = 1$
$\left( \cos(\theta) \right)^2 + \left( \sin(\theta) \right)^2=1$
---

$x=\cos(0^\circ)=1$
$y=\sin(0^\circ)=0$
---

One-third of the way between $0^\circ$ and $90^\circ$
---

$y=\sin(30^\circ)=\frac{1}{2}$
$x^2 + y^2=1$
---

$x^2=1-y^2$
$1-(\frac{1}{2})^2$
---

$x^2=1-\frac{1}{4}$
$x^2=\frac{3}{4}$
---

$x=\cos(30^\circ)=\sqrt{\frac{3}{4}}$
$y=\sin(30^\circ)=\frac{1}{2}$
---

Halfway between $0^\circ$ and $90^\circ$
---

$x=y$
$x^2+y^2=1$
---

$2x^2=1$
$x^2=\frac{1}{2}$
---

$x=\cos(45^\circ)=\sqrt{\frac{1}{2}}$
$y=\sin(45^\circ)=\sqrt{\frac{1}{2}}$
---

Two-thirds of the way between $0^\circ$ and $90^\circ$
---

$x=\cos(60^\circ)=\frac{1}{2}$
$y=\sin(60^\circ)=\sqrt{\frac{3}{4}}$
---

$x=\cos(90^\circ)=0$
$y=\sin(90^\circ)=1$
---
## Common Values of Sin and Cos
| $\theta$ | $x=\cos(\theta)$ | $y=\sin(\theta)$ |
| ------------ | -------------------- | -------------------- |
| $0^\circ$ | 1 | 0 |
| $30^\circ$ | $\sqrt{\frac{3}{4}}$ | $\frac{1}{2}$ |
| $45^\circ$ | $\sqrt{\frac{1}{2}}$ | $\sqrt{\frac{1}{2}}$ |
| $60^\circ$ | $\frac{1}{2}$ | $\sqrt{\frac{3}{4}}$ |
| $90^\circ$ | 0 | 1 |
---
## Sohcahtoa
Soh..
$Sine=\frac{Opposite}{Hypotenuse}$
...cah...
$Cosine=\frac{Adjacent}{Hypotenuse}$
...toa...
$Tangent=\frac{Opposite}{Adjacent}$
---

$Sine=\frac{Opposite}{Hypotenuse}$
$Cosine=\frac{Adjacent}{Hypotenuse}$
---

$\tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}$
$Tangent=\frac{Opposite}{Adjacent}$
---
## Summary
$x=\cos(\theta)$
$y=\sin(\theta)$
$\tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}$
$x^2 + y^2 = 1$
$\left( \cos(\theta) \right)^2 + \left( \sin(\theta) \right)^2=1$
---
## Summary (Continued)
Soh..
$Sine=\frac{Opposite}{Hypotenuse}$
...cah...
$Cosine=\frac{Adjacent}{Hypotenuse}$
...toa...
$Tangent=\frac{Opposite}{Adjacent}$
---
## Summary (Continued)
| $\theta$ | $x=\cos(\theta)$ | $y=\sin(\theta)$ |
| ------------ | -------------------- | -------------------- |
| $0^\circ$ | 1 | 0 |
| $30^\circ$ | $\sqrt{\frac{3}{4}}$ | $\frac{1}{2}$ |
| $45^\circ$ | $\sqrt{\frac{1}{2}}$ | $\sqrt{\frac{1}{2}}$ |
| $60^\circ$ | $\frac{1}{2}$ | $\sqrt{\frac{3}{4}}$ |
| $90^\circ$ | 0 | 1 |
{"metaMigratedAt":"2023-06-16T00:30:17.339Z","metaMigratedFrom":"YAML","title":"Trigonometric functions","breaks":true,"slideOptions":"{\"transition\":\"slide\"}","contributors":"[{\"id\":\"9fe8a01d-0120-433a-ac04-c4f7cdadb287\",\"add\":6033,\"del\":1963}]"}