# [Week 10] Emerging Research Trends [課程目錄](https://areganti.notion.site/Applied-LLMs-Mastery-2024-562ddaa27791463e9a1286199325045c) [課程連結](https://areganti.notion.site/Week-10-Emerging-Research-Trends-e84a42799e2d4750bdf017f4a3a5c651) ## ETMI5: Explain to Me in 5 Within this segment of our course, we will delve into the latest research developments surrounding LLMs. Kicking off with an examination of MultiModal Large Language Models (MM-LLMs), we'll explore how this particular area is advancing swiftly. Following that, our discussion will extend to popular open-source models, focusing on their construction and contributions. Subsequently, we'll tackle the concept of agents that possess the capability to carry out tasks autonomously from inception to completion. Additionally, we'll understand the role of domain-specific models in enriching specialized knowledge across various sectors and take a closer look at groundbreaking architectures such as the Mixture of Experts and RWKV, which are set to improve the scalability and efficiency of LLMs. 在我們課程的這一部分中,我們將深入研究圍繞在LLMs的最新研究進展。從檢視多模態大型語言模型 (MM-LLMs)開始,我們將探討這個特定領域如何快速發展。接下來,我們的討論將擴展到流行的開源模型,重點關注它們的建構和貢獻。隨後,我們將討論具有從開始到完成自主執行任務的能力的代理(agents)的概念。此外,我們將了解特定領域模型在豐富各個領域的專業知識方面的作用,並仔細研究突破性的架構,像是專家混合(Mixture of Experts)和RWKV,這些架構旨在提高LLMs的可擴展性和效率。 ## Multimodal LLMs (MM-LLMs) In the past year, there have been notable advancements in MultiModal Large Language Models (MM-LLMs). Specifically, MM-LLMs represent a significant evolution in the space of language models, as they incorporate multimodal components alongside their text processing capabilities. While progress has also been made in multimodal models in general, MM-LLMs have experienced particularly substantial improvements, largely due to the remarkable enhancements in LLMs over the year, upon which they heavily rely. 在過去的一年裡,多模態大型語言模型(MM-LLMs)取得了顯著的進展。具體來說,MM-LLMs代表了語言模型領域的重大發展,因為它們在文本處理能力之外還納入了多模態元件。雖然多模態模型總體上也有所進展,但MM-LLMs經歷了特別重大的改進,這在很大程度上歸功於過去一年中LLMs的顯著改善,而MM-LLMs很大程度上是依賴於LLMs。 Moreover, the development of MM-LLMs has been greatly aided by the adoption of cost-effective training strategies. These strategies have enabled these models to efficiently manage inputs and outputs across multiple modalities. Unlike conventional models, MM-LLMs not only retain the impressive reasoning and decision-making capabilities inherent in Large Language Models but also expand their utility to address a diverse array of tasks spanning various modalities. 此外,受益於成本效益高的訓練策略的採用,MM-LLMs也有著很大的發展。這些策略使這些模型能夠有效處理跨多種模態的輸入和輸出。與傳統模型不同,MM-LLMs不僅保留了大型語言模型固有的令人印象深刻的推理和決策能力,而且還擴展了其實用性,使之能夠解決跨越各種模態的多種任務。 To understand how MM-LLMs function, we can go over some common architectural components. Most MM-LLMs can be divided in 5 main components as shown in the image below. The components explained below are adapted from the paper “[MM-LLMs: Recent Advances in MultiModal Large Language Models](https://arxiv.org/pdf/2401.13601.pdf)”. Let’s understand each of the components in detail. 為了了解MM-LLMs的功能,我們可以回顧一些常見的架構元件。大多數MM-LLMs可以分為5個主要元件,如下圖所示。以下解釋的元件改編自論文"[MM-LLM:多模態大型語言模型的最新進展](https://arxiv.org/pdf/2401.13601.pdf)""。讓我們詳細了解每個元件。 ![image](https://hackmd.io/_uploads/HJf0wLZCR.png) Image Source: https://arxiv.org/pdf/2401.13601.pdf **1. Modality Encoder:** The Modality Encoder (ME) plays a pivotal role in encoding inputs from diverse modalities $I_X$ to extract corresponding features $F_X$. Various pre-trained encoder options exist for different modalities, including visual, audio, and 3D inputs. For visual inputs, options like NFNet-F6, ViT, CLIP ViT, and Eva-CLIP ViT are commonly employed. Similarly, for audio inputs, frameworks such as CFormer, HuBERT, BEATs, and Whisper are utilized. Point cloud inputs are encoded using ULIP-2 with a PointBERT backbone. Some MM-LLMs leverage ImageBind, a unified encoder covering multiple modalities, including image, video, text, audio, and heat maps. **1.模態編碼器:** 模態編碼器(ME)在對來自不同模態$I_X$的輸入進行編碼以提取對應特徵$F_X$方面扮演著關鍵角色。針對不同的模態,包括視覺、音訊和3D輸入,都存在著各種預訓練編碼器的選項。對於視覺輸入,通常採用NFNet-F6、ViT、CLIP ViT和Eva-CLIP ViT等選項。同樣,對於音訊輸入,使用了CFormer、HuBERT、BEATs和Whisper等框架。點雲輸入使用ULIP-2和PointBERT骨幹進行編碼。一些MM-LLM利用ImageBind,這是一種涵蓋多種模式的統一編碼器,包括圖像、視訊、文本、音訊和熱圖。 **2. Input Projector:** The Input Projector $Θ_(X→T)$ aligns the encoded features of other modalities $F_X$ with the text feature space $T$. This alignment is crucial for effectively integrating multimodal information into the LLM Backbone. The Input Projector can be implemented through various methods such as Linear Projectors, Multi-Layer Perceptrons (MLPs), Cross-attention, Q-Former, or P-Former, each with its unique approach to aligning features across modalities. **2.Input Projector:** Input Projector $θ_(X→T)$將其它模態$F_X$的編碼特徵與文字特徵空間$T$對齊。這種對齊方式對於有效地將多模態資訊整合到LLM骨幹來而是非常重要的。Input Projector可以透過各種方法來實現,例如Linear Projectors、Multi-Layer Perceptrons (MLPs)、Cross-attention、Q-Former或P-Former,每種方法都有其獨特的方式來做到跨模態對齊特徵。 **3. LLM Backbone:** The LLM Backbone serves as the core agent in MM-LLMs, inheriting notable properties from LLMs such as zero-shot generalization, few-shot In-Context Learning (ICL), Chain-of-Thought (CoT), and instruction following. The backbone processes representations from various modalities, engaging in semantic understanding, reasoning, and decision-making regarding the inputs. Additionally, some MM-LLMs incorporate Parameter-Efficient Fine-Tuning (PEFT) methods like Prefix-tuning, Adapter, or LoRA to minimize the number of additional trainable parameters. **3. LLM Backbone:** LLM的骨幹作為MM-LLMs中的核心代理(core agent),繼承了LLMs 的顯著特性,像是zero-shot generalization、few-shot In-Context Learning (ICL)、Chain-of-Thought (CoT)和instruction following。骨幹處理來自各模態的表示,參與有關輸入的語意理解、推理和決策。此外,一些 MM-LLMs結合了Parameter-Efficient Fine-Tuning (PEFT)方法,像是Prefix-tuning、Adapter或LoRA,以最小化額外可訓練參數的數量。 **4. Output Projector:** The Output Projector $Θ_(T→X)$ maps signal token representations $S_X$ from the LLM Backbone into features $H_X$ understandable to the Modality Generator $MG_X$. This projection facilitates the generation of multimodal content. The Output Projector is typically implemented using a Tiny Transformer or MLP, and its optimization focuses on minimizing the distance between the mapped features $H_X$ and the conditional text representations of $MG_X$ . **4.Output Projector:** Output Projector $θ_(T→X)$ 將來自LLM骨幹的signal token representations(信號符記表示)$S_X$映射到模態生成器$MG_X$可以理解的特徵$H_X$。這個投影有利於多模態內容的生成。Output Projector通常使用Tiny Transformer 或MLP來實現,其最佳化著重於最小化映射特徵$H_X$與$MG_X$的條件文本表示之間的距離。 **5. Modality Generator:** The Modality Generator $MG_X$ is responsible for producing outputs in distinct modalities such as images, videos, or audio. Commonly, existing works leverage off-the-shelf Latent Diffusion Models (LDMs) for image, video, and audio synthesis. During training, ground truth content is transformed into latent features, which are then de-noised to generate multimodal content using LDMs conditioned on the mapped features $H_X$ from the Output Projector. **5.模態生成器:** 模態產生器$MG_X$負責以不同的模態產生輸出,像是影像、視訊或是音頻。通常,現有的研究利用現成的Latent Diffusion Models (LDMs)來做影像、視訊和音訊的合成。在訓練期間,實際的內容被轉換為潛在特徵,然後使用以來自Output Projector所映射到的特徵$H_X$做為條件的LDMs對其進行去噪以生成多模態內容。 ### Training MM-LLMs are trained in two main stages: MultiModal Pre-Training (MM PT) and MultiModal Instruction-Tuning (MM IT). **MM PT:** During MM PT, MM-LLMs are trained to understand and generate content from different types of data like images, videos, and text. They learn to align these different kinds of information to work together. For example, they learn to associate a picture of a cat with the word "cat" and vice versa. This stage focuses on teaching the model to handle different types of input and output. **MM IT:** In MM IT, the model is fine-tuned based on specific instructions. This helps the model adapt to new tasks and perform better on them. There are two main methods used in MM IT: - **Supervised Fine-Tuning (SFT):** The model is trained on examples that are structured in a way that includes instructions. For instance, in a question-answer task, each question is paired with the correct answer. This helps the model learn to follow instructions and generate appropriate responses. - **Reinforcement Learning from Human Feedback (RLHF):** The model receives feedback on its responses, usually in the form of human-generated feedback. This feedback helps the model improve its performance over time by learning from its mistakes. Therefore MM-LLMs are trained to understand and generate content from multiple sources of information, and they can be fine-tuned to perform specific tasks better based on instructions and feedback. The below diagram summarizes popular MM-LLMs and models used for each of their components. MM-LLMs的訓練分為兩個主要階段:多模態的預訓練(MM PT)和多模態指令調優(MM IT)。 **MM PT:** 在MM PT的訓練階段中,MM-LLMs會被用不同的資料類型訓練來瞭解並生成內容,像是影像、視訊、與文本。他們學會將這些不同類型的信息對齊以便可以協同作業。舉例來說,它們學會將貓的照片與"貓"這個詞聯繫起來,反之亦然。此階段的重點在於教導模型處理不同類型的輸入和輸出。 **MM IT:** 在MM IT的訓練階段中,模型會根據特定的指令來進行微調。這有助於模型適應新的任務並更好地執行它們。MM IT兩個主要的方法: - **Supervised Fine-Tuning (SFT):** 該模型是根據以包含指令的方式建構的範例進行訓練的。舉例來說,在問答任務中,每個問題都與正確答案配對。這有助於模型學習遵循指令並生成適當的響應。 - **Reinforcement Learning from Human Feedback (RLHF):** 此模型接收有關其回應的反饋,通常以人類生成的反饋形式。這種反饋有助於模型透過從錯誤中學習來隨著時間的推移提高其效能。 因此,MM-LLMs被訓練成是可以理解和生成來自多個信息源的內容,並且可以根據指令和反饋進行微調,以更好地執行特定任務。 下圖總結了流行的 MM-LLMs及其每個元件所使用的模型。 ![image](https://hackmd.io/_uploads/S1r1dIZ0C.png) Image Source: https://arxiv.org/pdf/2401.13601.pdf ### Emerging Research Directions Some potential future directions for MM-LLMs involve extending their capabilities through various avenues: 1. **More Powerful Models**: - Extend MM-LLMs to accommodate additional modalities beyond the current ones like image, video, audio, 3D, and text, such as web pages, heat maps, and figures/tables. - Incorporate various types and sizes of LLMs to provide practitioners with flexibility in selecting the most suitable one for their specific requirements. - Enhance MM IT datasets by diversifying the range of instructions to improve MM-LLMs' understanding and execution of user commands. - Explore integrating retrieval-based approaches to complement generative processes in MM-LLMs, potentially enhancing overall performance. 2. **More Challenging Benchmarks**: - Develop larger-scale benchmarks that include a wider range of modalities and use unified evaluation standards to adequately challenge the capabilities of MM-LLMs. - Tailor benchmarks to assess MM-LLMs' proficiency in practical applications, such as evaluating their ability to discern and respond to nuanced aspects of social abuse presented in memes. 3. **Mobile/Lightweight Deployment**: - Develop lightweight implementations to deploy MM-LLMs on resource-constrained platforms like low-power mobile and IoT devices, ensuring optimal performance. 4. **Embodied Intelligence**: - Explore embodied intelligence to replicate human-like perception and interaction with the surroundings, enabling robots to autonomously implement extended plans based on real-time observations. - Further enhance MM-LLM-based embodied intelligence to improve the autonomy of robots, building on existing advancements like PaLM-E and EmbodiedGPT. 5. **Continual IT**: - Develop approaches for MM-LLMs to continually adapt to new MM tasks while maintaining superior performance on previously learned tasks, addressing challenges such as catastrophic forgetting and negative forward transfer. - Establish benchmarks and develop methods to overcome challenges in continual IT for MM-LLMs, ensuring efficient adaptation to emerging requirements without substantial retraining costs. MM-LLMs未來擴展它們的能力的可能方向: 1. **更強大的模型**: - 擴展MM-LLMs以適應圖像、視訊、音訊、3D和文本等當前模式之外的其它模式,例如網頁、熱圖和圖形/表格。 - 納入各種類型和規模的LLMs,為從業人員提供靈活選擇最適合其特定需求的模型。 - 透過多樣化指令範圍來增強MM IT資料集,以提高MM-LLMs對使用者命令的理解和執行。 - 探索整合基於檢索的方法來補充MM-LLMs中的生成過程,從而有可能提高整體效能。 2. **更具挑戰性的基準**: - 制定更大規模的基準,包括更廣泛的模式,並使用統一的評估標準來充分挑戰MM-LLMs的能力。 - 客製化基準來評估MM-LLMs在實際應用中的熟練程度,像是評估它們識別和應對迷因(應該是這麼翻吧..)中所呈現的社交虐待的細微差別的能力。 3. **移動/輕量級部署**: - 開發輕量級實現,將MM-LLMs部署在資源有限的平台上,像是低功耗的手機與IoT設備,以確保最佳效能。 4. **體現智慧**: - 探索體現智慧,以複製類似人類的感知和與周遭環境的豆動,讓機器人能夠根據實時觀察到的情況自主實施擴展計劃。 - 在現有PaLM-E和EmbodiedGPT等進展的基礎上,進一步增強基於MM-LLM的體現智慧,提高機器人的自主性。 5. **Continual IT**: - 為MM-LLMs開發方法,使其能夠不斷地適應新的MM任務,同時在先前學習過的任務上保持卓越的效能,解決災難性遺忘和負向遷移等挑戰。 - 建立基準並開發方法來克服MM-LLMs在continual IT上的挑戰,確保在不需要大量的再訓練成本情況下能夠有效適應新興需求。 ## Open-Source Models Recent developments in open-source LLMs have been pivotal in democratizing access to advanced AI technologies. Open-source LLMs offer several advantages over closed-source models, enhancing transparency, customizability, and collaboration. They allow for a deeper understanding of model workings, enable modifications to suit specific needs, and encourage improvements through community contributions. They also serve as educational tools and support a diverse AI ecosystem, preventing monopolies. However, challenges such as computational demands and potential misuse exist, but the benefits of open-source models often outweigh these issues, especially for those valuing openness and adaptability in AI development. 近來開源LLMs的發展對於實現先進人工智慧技術普及至社會大眾來說是非常重要的。相較於閉源模型開源的LLMs有著多種優勢,可以增強透明度、可自訂性和協作性。它們可以讓人們更深入地了解模型的工作原理,進行修改以滿足特定需求,並鼓勵透過社群貢獻來進行改進。它們還充當教育工具並支援多樣化的人工智慧生態系統,防止壟斷。然而,計算需求和潛在濫用等挑戰仍然存在,但是對於那些重視人工智慧發展的開放性和適應性的人來說,開源模型的好處往往超過這些問題(Z>B)。 A few popular Open-Source LLMs are listed below: 以下列出了一些流行的開源LLMs(模型的介紹就不特別翻譯,直接去Hugging Face找你需要的模型吧): ### **LLaMA by Meta** - **LLaMA** (13B parameters) was released by Meta in February 2023, outperforming GPT-3 on many NLP benchmarks despite having fewer parameters. **LLaMA-2**, an enhanced version with 40% more data and doubled context length, was released in July 2023 along with specialized versions for conversations (**LLaMA 2-Chat**) and code generation (**LLaMA Code**). ### **Mistral** - Developed by a Paris-based startup, **Mistral 7B** set new benchmarks by outperforming all existing open-source LLMs up to 13B parameters in English and code benchmarks. Mistral AI later also released **Mixtral 8x7B**, a Sparse Mixture of Experts (SMoE) model. This model marks a departure from traditional AI architectures and training methods, aiming to provide the developer community with innovative tools that can inspire new applications and technologies. We’ll learn more about the Mixture of Experts paradigm in the next serction ### **Open Language Model (OLMo)** - **OLMo** is part of the AI2 LLM framework aimed at encouraging open research by providing access to training data, code, models, and evaluation tools. It includes the **Dolma dataset**, comprehensive training and inference code, model weights for four 7B scale variants, and an extensive evaluation suite under the Catwalk project. ### **LLM360 Initiative** - **LLM360** proposes a fully open-source approach to LLM development, advocating for the release of training code, data, model checkpoints, and intermediate results. It released two 7B parameter LLMs, **AMBER** and **CRYSTALCODER**, complete with resources for transparency and reproducibility in LLM training. While Llama and Mistral only release their models, OLMo and LLM360 go further by providing checkpoints, datasets, and more, ensuring their offerings are fully open and capable of being reproduced. ## Agents LLM Agents have been gaining significant momentum in recent months and represent the future and expansion of LLM capabilities. An LLM agent is an AI system that employs a large language model at its core to perform a wide range of tasks, not limited to text generation. These tasks include conducting conversations, reasoning, completing various tasks, and exhibiting autonomous behaviors based on the context and instructions provided. LLM agents operate through sophisticated prompt engineering, where instructions, context, and permissions are encoded to guide the agent's actions and responses. 近幾個月來,LLM Agents的發展勢不可擋,代表了LLM能力的未來和擴展。 LLM agent是一種人工智慧系統,其核心採用大型語言模型來執行廣泛的任務,而非僅限於文本生成。這些任務包括進行對話、推理、完成各種任務以及根據所提供的上下文和指令表現出自主行為。 LLM agents程式透過複雜的提示工程進行操作,其中對指令、上下文和權限進行編碼以指導agent的操作和回應。 ### **Capabilities of LLM Agents** - **Autonomy**: LLM agents can operate with varying degrees of autonomy, from reactive to proactive behaviors, based on their design and the prompts they receive. - **Task Completion**: With access to external knowledge bases, tools, and reasoning capabilities, LLM agents can assist in or independently handle a variety of applications, from chatbots to complex workflow automation. - **Adaptability**: Their language modeling strength allows them to understand and follow natural language prompts, making them versatile and capable of customizing their responses and actions. - **Advanced Skills**: Through prompt engineering, LLM agents can be equipped with advanced analytical, planning, and execution skills. They can manage tasks with minimal human intervention, relying on their ability to access and process information. - **Collaboration**: They enable seamless collaboration between humans and AI by responding to interactive prompts and integrating feedback into their operations. - **自主性**:LLM agents可以根據其設計與接收到的提示,以不同程度的自主性進行操作(從被動行為到主動行為)。 - **任務完成**:透過存取外部知識庫、工具和推理功能,LLM agents可以協助或獨立處理各種應用程式,從聊天機器人到複雜的工作流程自動化。 - **適應性**:它們的語言模型能力使它們能夠理解並依循自然語言提示,使它們變得多才多藝並能夠定制他們的反應和行動。 - **進階技能**:透過提示工程,LLM agents可以備有先進的分析、規劃和執行技能。它們可以依靠自身存取和處理信息的能力,在最少的人為干預情況下管理任務。 - **協作**:它們透過回應互動式提示並將反饋整合到操作過程中的方式來實現人類和人工智慧之間的無縫協作。 LLM agents combine the core language processing capabilities of LLMs with additional modules like planning, memory, and tool usage, effectively becoming the "brain" that directs a series of operations to fulfill tasks or respond to queries. This architecture allows them to break down complex questions into manageable parts, retrieve and analyze relevant information, and generate comprehensive responses or visual representations as needed. LLM agents結合LLMs的核心語言處理能力與額外的模型,像是規劃、記憶和工具,有效地成為指揮一系列操作來完成任務或回應查詢的"大腦"。這種架構使它們能夠將複雜的問題分解為可管理的部分,檢索和分析相關信息,並根據需求生成全面性的回應或視覺化表示。 Example: Suppose we're interested in organizing an international conference on sustainable energy solutions, aiming to cover topics such as renewable energy technologies, sustainability practices in energy production, and innovative policies for promoting green energy. The task involves complex planning and information gathering, including identifying key speakers, understanding current trends in sustainable energy, and engaging with stakeholders. 舉例來說: 假設我們有興趣組織一個關於永續能源解決方案的國際會議,旨在涵蓋再生能源技術、能源生產中的永續實踐以及促進綠色能源的創新政策等主題。該任務涉及複雜的規劃和資訊收集,包括確定主要發言人、了解永續能源的當前趨勢以及與利害關係人的互動。 To tackle this multifaceted project, an LLM agent could be employed to: 1. **Research and Summarization**: Break down the task into sub-tasks such as identifying emerging trends in sustainable energy, locating leading experts in the field, and summarizing recent research findings. The agent would use its access to a vast range of digital resources to compile comprehensive reports. 2. **Speaker Engagement**: Draft personalized invitations to potential speakers, incorporating details about the conference's aims and how their expertise aligns with its goals. The agent can generate these communications based on profiles and previous works of the experts. 3. **Logistics Planning**: Create a detailed plan for the conference, including a timeline of activities leading up to the event, a checklist for logistical arrangements (venue, virtual platform setup for hybrid participation, etc.), and a strategy for participant engagement. The agent can outline these plans by accessing databases of event planning resources and best practices. 4. **Stakeholder Communication**: Draft updates and newsletters for stakeholders, providing insights into the conference's progress, highlights of the agenda, and key speakers confirmed. The agent tailors each communication piece to its audience, whether it's sponsors, participants, or the general public. 5. **Interactive Q&A Session Planning**: Develop a framework for an interactive Q&A session, including pre-gathering questions from potential attendees, categorizing them, and preparing briefing documents for speakers. The agent can facilitate this by analyzing registration data and submitted queries. 為了解決這個多面向的專案,可以採用LLM agent來做下面這些事: 1. **研究和總結**:將任務分解為子任務,像是識別永續能源的新興趨勢、找到該領域的頂尖專家以及總結最新的研究成果。這個agent將利用其對大量數位資源的存取權限來編纂全面性的報告。 2. **演講者邀請**:起草對潛在演講者的個人化邀請,其中包含有關會議目標以及他們的專業知識如何與會議目標一致的詳細資訊。agent可以根據專家的個人資料和先前的研究來生成這些溝通內容。 3. **後勤規劃**:為會議制定詳細計劃,包括會議前的活動時間表、後勤安排的檢查清單(場地、虛實整合的平台)以及與會者參與的策略。agent可以透過存取活動規劃資源和最佳實踐的資料庫來擬定這些計劃。 4. **利害關係人溝通**:為利害關係人提供更新草案和時事通訊,提供對會議進度、議程要點和已確認的主要演講者的見解。agent根據其受眾,無論是贊助商、參與者還是一般大眾,量身定制每個溝通片段內容。 5. **互動問答環節規劃**:制定互動問答環節的框架,包括預先收集潛在與會者的問題、對問題進行分類以及為演講者準備簡報文件。agent可以透過分析註冊資料和提交的問題來促進這一點。 In this scenario, the LLM agent not only aids in the execution of complex and time-consuming tasks but also ensures that the planning process is thorough, informed by the latest developments in sustainable energy, and tailored to the specific goals of the conference. By leveraging external databases, tools for data analysis and visualization, and its innate language processing capabilities, the LLM agent acts as a comprehensive assistant, streamlining the organization of a large-scale event with numerous moving parts. 在這個劇本中,LLM agent不僅協助執行複雜且耗時的任務,而且還確保規劃過程是全面性的,了解永續能源的最新發展,並根據會議的具體目標進行客製化。透過利用外部資料庫、資料分析和視覺化工具及其固有的語言處理能力,LLM agent充當萬能的助手,簡化組織一個涉及眾多環節的大型活動的流程。 The framework for LLM agents can be conceptualized through various lenses, and one such perspective is offered by the paper “[A Survey on Large Language Model based Autonomous Agents](https://arxiv.org/pdf/2308.11432.pdf)”, through its distinctive components. This architecture is composed of four key modules: the Profiling Module, Memory Module, Planning Module, and Action Module. Each of these modules plays a crucial role in enabling the LLM agent to act autonomously and effectively in various scenarios. LLM agents的框架可以透過各種視角來概念化,論文[A Survey on Large Language Model based Autonomous Agents](https://arxiv.org/pdf/2308.11432.pdf)透過其獨特的組件提供了一個這樣的觀點。這個架構由四個關鍵模組所組成:分析模組、記憶模組、規劃模組和操作模組。這些模組中的每一個都在使LLM agents能夠在各種場景中自主有效地採取行動方面發揮著至關重要的作用。 ![image](https://hackmd.io/_uploads/r12eOLZCA.png) Image Source : https://arxiv.org/pdf/2308.11432.pdf ### **Components of LLM Agents** 1. **Profiling Module** The Profiling Module is responsible for defining the agent's identity and role. It incorporates information such as age, gender, career, personality traits, and social relationships to shape the agent's behavior. This module uses various methods to create profiles, including handcrafting for precise control, LLM-generation for scalability, and dataset alignment for real-world accuracy. The agent's profile significantly influences its interactions, decision-making processes, and the way it executes tasks, making this module foundational to the agent's design. 分析模組負責定義agent的身份和角色。它結合了年齡、性別、職業、性格特徵和社會關係等信息來塑造agent的行為。這個模組使用各種方法來創建設定檔,包括用於精確控制的手工設計、用於可擴展性的LLM生成以及用於真實世界準確性的資料集對齊。agent所創建的設定檔明顯影響其互動、決策過程以及執行任務的方式,使該模組成為agent設計的基礎。 **2. Memory Module** The Memory Module stores information the agent perceives from its environment and uses this stored knowledge to inform future actions. It mimics human memory processes, with structures inspired by sensory, short-term, and long-term memory. This module enables the agent to accumulate experiences, evolve based on past interactions, and behave in a consistent and effective manner. It ensures that the agent can recall past behaviors, learn from them, and adapt its strategies over time. 記憶模組儲存agent從其環境中接受到的信息,並使用這些儲存的知識來指導未來的行動。它模仿人類的記憶過程,其結構靈感來自感官、短期、與長期記憶。該模組使agent能夠累積經驗,根據過去的互動進行發展,並以一致且有效的方式行事。它確保agent能夠回憶過去的行為,從中學習,並隨著時間的推移調整其策略。 **3. Planning Module** The Planning Module empowers the agent with the ability to decompose complex tasks into simpler subtasks and address them individually, mirroring human problem-solving strategies. It includes planning both with and without feedback, allowing for flexible adaptation to changing environments and requirements. Strategies such as single-path reasoning and Chain of Thought (CoT) are used to guide the agent in a step-by-step manner towards achieving its goals, making the planning process critical for the agent's effectiveness and reliability. 規劃模組賦予agent能夠將複雜的任務分解為更簡單的子任務並各別地處理它們,從而反映了人類解決問題的策略。它包括有反饋和無反饋的規劃,允許靈活適應不斷變化的環境和需求。像是single-path reasoning和思維鏈(Chain of Thought, CoT)等策略就是用於引導agent以逐步的方式實現其目標,使得規劃過程對於agent的有效性和可靠性來說變得重要。 **4. Action Module** The Action Module translates the agent's decisions into specific outcomes, directly interacting with the environment. It considers the goals of the actions, how actions are generated, the range of possible actions (action space), and the consequences of these actions. This module integrates inputs from the profiling, memory, and planning modules to execute decisions that align with the agent's objectives and capabilities. It is essential for the practical application of the agent's strategies, enabling it to produce tangible results in the real world. 動作模組將agent的決策轉化為具體的結果,直接與環境互動。它考慮動作的目標、動作如何生成、可能動作的範圍(動作空間)以及這些動作的後果。該模組整合了來自分析、記憶和規劃模組的輸入,以執行與agent的目標和能力一致的決策。它對於agentdd的策略的實際應用來說是非常重要的,使其能夠在真實世界中產生實際的結果。 Together, these modules form a comprehensive framework for LLM agent architecture, allowing for the creation of agents that can assume specific roles, perceive and learn from their environment, and autonomously execute tasks with a degree of sophistication and flexibility that mimics human behavior. 總之吼,這些模組共同構成了LLM agents架構的全面性框架,允許建立可以承擔特定角色、感知環境並從中學習的agent,並在一定程式上模仿人類行為的複雜性和靈活性的方式來自主執行任務。 ### Future Research Directions 1. Most LLM Agent research has been confined to text-based interactions. Expanding into multi-modal environments, where agents can process and generate outputs across various formats like images, audio, and video, introduces complexities in data processing and requires agents to interpret and respond to a broader range of sensory inputs. 2. Hallucination, where models generate factually incorrect text, becomes more problematic in LLM agent systems due to the potential for cascading misinformation. Developing strategies to detect and mitigate hallucinations involves managing information flow to prevent inaccuracies from spreading across the network. 3. While LLM agents learn from instant feedback, creating reliable interactive environments for scalable learning poses challenges. Furthermore, current methods focus on adjusting agents individually, not fully leveraging the collective intelligence that could emerge from coordinated interactions among multiple agents. 4. Scaling the number of agents (multi-agent systems) for a use-case raises significant computational demands and complexities in coordination and communication among agents. Developing efficient orchestration methodologies is essential for optimizing workflows and ensuring effective multi-agent cooperation. 5. Current benchmarks may not adequately capture the emergent behaviors critical to agents or span across diverse research domains. Developing comprehensive benchmarks is crucial for assessing agents’ capabilities in various fields, including science, economics, and healthcare. 1. 大多數LLM Agent的研究僅限於基於文本的互動。擴展到多模態環境中,其agents可以處理和生成各種格式的輸出,像是圖像、音訊和視訊等,這會帶來資料處理的複雜性,並會要求agents解釋和回應更廣泛的感官輸入。 2. 幻覺,也就是模型生成事實上不正確的文本,在LLM agent系統中變得更加棘手,因為可能會出現級聯(連鎖的)錯誤訊息。制定檢測和減輕幻覺的策略涉及管理訊息流來防止錯誤訊息在網路中傳播。 3. 雖然LLM agents從即時的反饋中學習,但創建可擴展學習的可靠互動境仍然具有挑戰性。此外,當前的方法著重於單獨調整agents,而不是充分利用多個agents之間協調互動中可能出現的集體智慧。 4. 擴展用例的agents(multi-agent systems)數量會明顯增加agents之間協作和溝通上的計算需求和複雜性。開發高效的編排方法對於最佳化工作流與確保有效的multi-agent之間的協作來說是非常重要的。 5. 當前的基準可能無法充分捕捉對agnets或跨不同研究領域來說非常重要的突發行為。制定全面的基準對於評估agent在科學、經濟和醫療保健等各個領域的能力來說是非常重要的。 ## Domain Specific LLMs While general LLMs are versatile and perform well on a broad range of tasks, they often fall short when it comes to handling specialized or niche tasks due to a lack of training on domain-specific data. Additionally, running these generic models can be costly. In these scenarios, domain-specific LLMs emerge as a superior alternative. Their training is focused on data from specific fields, which enhances their accuracy and provides them with a deeper understanding of the relevant terminology and concepts. This tailored approach not only improves their performance on tasks specific to a certain domain but also minimizes the chances of generating irrelevant or incorrect information. 雖然一般的LLMs用途廣泛,並且在很多任務上的表現都很不錯,但由於缺乏對特定領域資料的訓練,使它們在處理專業或特定任務時往往表現不佳。此外,運行這些通用模型的成本可能很高。在這些情況下,特定領域的LLMs成為更好的選擇。它們的訓練集中在來自特定領域的資料上,這提高了他們的準確性,並使他們對相關術語和概念有更深入的理解。這種量身定制的方法不僅提高了他們在特定領域的任務上的表現,而且還最大限度地減少了生成不相關或不正確信息的機會。 Designed to adhere to the regulatory and ethical standards of their respective domains, these models ensure the appropriate handling of sensitive data. They also communicate more effectively with domain experts, thanks to their command of professional language. From an economic standpoint, domain-specific LLMs offer more efficient solutions by eliminating the need for significant manual adjustments. Furthermore, their specialized knowledge base enables the identification of unique insights and patterns, driving innovation in their respective fields. 這些模型的設計旨在遵守各自領域的監管和道德標準,確保對敏感資料的適當處理。受益於它們對專業語言的掌握,它們還可以與領域專家更有效地溝通。從經濟的角度來看,特定領域的LLMs通過消除對大量人工調整的需求,提供了更高效的解決方案。此外,他們的專業知識庫能夠辨識獨特的見解與模式,推動各自領域的創新。 Some popular domain specific LLMs are listed below 以下列出了一些熱門的特定領域的LLMs(這邊對特定領域LLMs的說明不做翻譯) ### Popular Domain Specific LLMs **Clinical and Biomedical LLMs** **臨床與生物醫學LLMs** - **BioBERT**: A domain-specific model pre-trained on large-scale biomedical corpora, designed to mine biomedical text effectively. - **Hi-BEHRT**: Offers a hierarchical Transformer-based structure for analyzing extended sequences in electronic health records, showcasing the model's ability to handle complex medical data. **LLMs for Finance** **金融LLMs** - **BloombergGPT**: A finance-specific model with 50 billion parameters, trained on a vast array of financial data, showing excellence in financial tasks. - **FinGPT**: A financial model fine-tuned with specific applications in mind, leveraging pre-existing LLMs for enhanced financial data understanding. **Code-Specific LLMs** **程式碼專用的LLMs** - **WizardCoder**: Empowers Code LLMs with complex instruction fine-tuning, showcasing adaptability to coding domain challenges. - **CodeT5**: A unified pre-trained model focusing on the semantics conveyed in code, highlighting the importance of developer-assigned identifiers in understanding programming tasks. These domain-specific LLMs illustrate the vast potential and adaptability of AI across different fields, from understanding multilingual content and processing clinical data to financial analysis and code generation. By honing in on the unique challenges and data types of each domain, these models open up new avenues for innovation, efficiency, and accuracy in AI applications. 這些特定領域的LLMs展示了人工智慧在不同領域的巨大潛力和適應性,從理解多語言內容和處理臨床資料到財務分析與程式碼生成。透過針對每個領域的獨特的挑戰與資料類型,這些模型為人工智慧應用的創新、效率和準確性開闢了新的途徑。 ### Future Trends for domain specific LLMs 1. Domain-specific LLMs will likely evolve to handle not just text but also images, audio, and other data types, enabling more comprehensive understanding and interaction capabilities across various formats. 2. Future models may incorporate advanced interactive learning techniques, enabling them to update their knowledge base in real-time based on user feedback and new data, ensuring their outputs remain relevant and accurate. 3. We might see an increase in systems where domain-specific LLMs work in concert with other AI technologies, such as decision-making algorithms and predictive models, to provide holistic solutions (Agents, like we discussed in the previous section) 4. With growing awareness of AI's societal impact, the development of domain-specific LLMs will likely emphasize ethical considerations, fairness, and transparency, particularly in sensitive areas like healthcare and finance. 1. 特定領域的LLMs可能會發展到不僅可以處理文本,還可以處理影像、音頻和其它資料類型,使其能夠在各種資料格式中實現更全面性的理解與互動能力。 2. 未來的模型可能會結合先進的互動式學習技術,使它們能夠根據使用者反饋和新資料即時性的更新其知識庫,確保其輸出保持相關性和準確性。 3. 我們也許會看到特定領域的LLMs與其它人工智慧技術(像是決策演算法和預測模型)協同工作的系統有所增加,以提供整體解決方案(代理,就像我們在上一節中討論的那樣) 4. 隨著人們對人工智慧社會影響的認識不斷成長,特定領域LLMs的發展可能會強調道德考量、公平性和透明度,特別是在醫療保健和金融等敏感領域。 ## New LLM Architectures ### Mixture of Experts Mixture of Experts (MoEs) represents a sophisticated architecture within the realm of transformer models, focusing on enhancing model scalability and computational efficiency. Here's a breakdown of what MoEs are and their significance: Mixture of Experts (MoEs)代表transformer models領域中的一種複雜的架構,專注於增強模型可擴展性和計算效率。以下是MoEs的解析及其重要性: **Definition and Components** - **MoEs in Transformers**: In transformer models, MoEs replace traditional dense feed-forward network (FFN) layers with sparse MoE layers. These layers comprise a number of "experts," each being a neural network—typically FFNs, but potentially more complex structures or even hierarchical MoEs. - **Experts**: These are specialized neural networks (often FFNs) that handle specific portions of the data. An MoE layer may contain several experts, such as 8, allowing for a diverse range of data processing capabilities within the same model layer. - **Gate Network/Router**: This is a critical component that directs input tokens to the appropriate experts based on learned parameters. The router decides, for instance, which expert is best suited to process a given input token, thus enabling a dynamic allocation of computational resources. **定義和組成** - **MoEs in Transformers***:在transformer models中,MoEs以稀疏的MoEs層取代傳統的密集前饋網路(FFN)層。這些網路層由許多"專家"所組成,每個"專家"都是一個神經網路,通常是FFNs,但可能具有更複雜的結構,甚至是分層的MoEs。 - **Experts**:這些是處理資料特定部分的專門神經網路(通常是FFNs)。一個MoE層可能包含多個專家,例如8個,允許在同一模型層中具有多樣化的資料處理能力。 - **Gate Network/Router**:這是一個關鍵元件,其根據學習到的參數將input tokens引導至適當的專家。舉例來說,router決定哪個專家最適合處理給定的input tokens,從而實現計算資源的動態分配。 **Advantages** - **Efficient Pretraining**: By utilizing MoEs, models can be pretrained with significantly less computational resources, allowing for larger model or dataset scales within the same compute budget as a dense model. - **Faster Inference**: Despite having a large number of parameters, MoEs only use a subset for inference, leading to quicker processing times compared to dense models with a similar parameter count. However, this efficiency comes with the caveat of high memory requirements due to the need to load all parameters into RAM. **優點** - **高效預訓練**:透過使用MoEs,可以使用明顯更少的計算資源來預訓練模型,在與密集模型相同的計算預算內允許更大的模型或資料集規模。 - **更快的推理**:儘管有大量的參數,MoEs僅使用一個子集來進行推理,與具有相似參數數量的密集模型相比,處理時間更快。然而,因為需要將所有參數載入到記憶體中,這種效率伴隨著高記憶體需求的問題。 **Challenges** - **Training Generalization**: While MoEs are more compute-efficient during pretraining, they have historically faced challenges in generalizing well during fine-tuning, often leading to overfitting. - **Memory Requirements**: The efficient inference process of MoEs requires substantial memory to load the entire model's parameters, even though only a fraction are actively used during any given inference task. **挑戰** - **訓練泛化**:雖然MoEs在預訓練期間的計算效率更高,但它們歷來在微調期間面臨著泛化的挑戰,通常會導致過度擬合。 - **記憶體需求**:MoEs的高效推理過程需要大量記憶體來載入整個模型的參數,儘管在任何給定的推理任務期間只有一小部分的參數被使用。 **Implementation Details** - **Parameter Sharing**: Not all parameters in a MoE model are exclusive to individual experts. Many are shared across the model, contributing to its efficiency. For instance, in a MoE model like Mixtral 8x7B, the dense equivalent parameter count might be less than the sum total of all experts due to shared components. - **Inference Speed**: The inference speed benefits stem from the model only engaging a subset of experts for each token, effectively reducing the computational load to that of a much smaller model, while maintaining the benefits of a large parameter space. **實作細節** - **參數共享**:在MoE模型中,並非所有參數都專屬於個別專家所擁有的。許多參數在模型中是共享的,有助於提高其效率。舉例來說,在像Mixtral 8x7B這樣的MoE模型中,由於元件共享,密集等效的參數量可能小於所有專家的總和。 - **推理速度**:推理速度的優勢源於模型僅針對每個token聘請一部分專家,有效地將計算負載降低到與小得多的模型相當,同時保持大型參數空間的優勢。 ### Mamba Models Mamba is an innovative recurrent neural network architecture that stands out for its efficiency in handling long sequences, potentially up to 1 million elements. This model has garnered attention for being a strong competitor to the well-known Transformer models due to its impressive scalability and faster processing capabilities. Here's a simplified overview of what Mamba is and why it's significant: Mamba是一種創新的遞迴神經網路架構,因其在處理長序列方面的效率非常突出,可能最多能夠處理100萬個元素。這個模型之所以受到關注是因為它在可擴展性和處理速度方面的表現優異,可以與著名的Transformer模型相抗衡。以下是對 Mamba 的簡要概述以及它為何如此重要: **Core Features of Mamba:** - **Linear Time Processing**: Unlike Transformers, which suffer from computational and memory costs that scale quadratically with sequence length, Mamba operates in linear time. This makes it much more efficient, especially for very long sequences. - **Selective State Spaces**: Mamba employs selective state spaces, allowing it to manage and process lengthy sequences effectively by focusing on relevant parts of the data at any given time. - **線性時間處理**:不同於Transformers,Transformers的計算和記憶體成本與序列長度呈現二次方關係,而Mamba則是以線性時間在運行。這使得它(Mamba)更加高效,特別是對於非常長的序列。 - **選擇性狀態空間**:Mamba採用選擇性狀態空間,使其能夠透過在任何給定時間關注資料中的相關部分來高效地管理和處理冗長的序列。 Selective State Spaces (SSS) in the context of models like Mamba refer to a sophisticated approach in neural network architecture that enables the model to efficiently handle and process very long sequences of data. This approach is particularly designed to improve upon the limitations of traditional models like Transformers and Recurrent Neural Networks (RNNs) when dealing with sequences of significant length. Here’s a breakdown of the key concepts behind Selective State Spaces: Mamba等模型中的選擇性狀態空間(SSS)是指神經網路架構中的一種複雜方法,使模型能夠有效地掌握和處理很長的資料序列。這種方法專門用於改進Transformer和遞迴神經網路(RNNs)等傳統模型在處理長度較長的序列時的限制。以下是選擇性狀態空間背後的關鍵概念的解析: **Basis of Selective State Spaces:** - **State Space Models (SSMs)**: At the core, SSS builds upon the concept of State Space Models. SSMs are a class of models used for describing systems that evolve over time, capturing dynamics through state variables that change in response to external inputs. SSMs have been used in various fields, such as signal processing, control systems, and now, in sequence modeling for AI. - **Selectivity Mechanism**: The "selective" aspect introduces a mechanism that allows the model to determine which parts of the input sequence are relevant at any given time. This is achieved through a gating or routing function that dynamically selects which state space (or subset of the model's parameters) should be activated based on the input. This selective activation helps the model to focus its computational resources on the most pertinent parts of the data, enhancing efficiency. - **狀態空間模型(SSMs)**:SSS的核心建立在狀態空間模型的概念之上。SSMs是一類用於描述隨時間演變的系統的模型,透過響應外部輸入而變化的狀態變數(state variables)來捕捉動態。 SSMs已經應用於各個領域,像是信號處理、控制系統,現在也用於人工智慧的序列模型。 - **選擇性機制**:「選擇性」的方面引入了一種機制,允許模型確定輸入序列的哪些部分在任何給定時間點是相關的。這是透過閘道或路由函數來實現的,該函數根據輸入動態地選擇應該激活哪個狀態空間(或者說是模型參數的子集)。這種選擇性激活有助於模型將其計算資源集中在資料最相關的部分,從而提高效率。 **Advantages Over Traditional Models:** - **Efficiency with Long Sequences**: Mamba's architecture is optimized for speed, offering up to five times faster throughput than Transformers while handling long sequences more effectively. - **Versatility**: While its prowess is evident in text-based applications like chatbots and summarization, Mamba also shows potential in other areas requiring the analysis of long sequences, such as audio generation, genomics, and time series data. - **Innovative Design**: The model builds on state space models (S4) but introduces a novel approach by incorporating selective structured state space sequence models, which enhance its processing capabilities. - **處理長序列的效率**:Mamba的架構針對速度進行了最佳化,提供了比Transformer快五倍的吞吐量,同時更有效地處理長序列。 - **多功性**:Mamba不只在像是聊天機器人和摘要等基於文本的應用程式中有著出色的表現,在其它需要分析長序列的領域,像是音訊生成、基因組學和時間序列資料,也顯示出它的潛力。 - **創新設計**:該模型建立在狀態空間模型(S4)的基礎上,但透過合併選擇性結構化狀態空間序列模型引入了一種新穎的方法,增強了其處理能力。 Mamba represents a significant advancement in sequence modeling, offering a more efficient alternative to Transformers for tasks involving long sequences. Its ability to scale linearly with sequence length without a corresponding increase in computational and memory requirements makes it a promising tool for a wide range of applications beyond just natural language processing. Mamba代表在序列建模方面的重大進步,為涉及長序列的任務提供了比Transformers更有效的替代方案。它能夠隨序列長度而線性地擴展,並且不會相對應的增加計算和記憶體需求,這使其成為除了自然語言處理之外的廣泛應用的有前景的工具。 In essence, Mamba is redefining what's possible in AI sequence modeling, combining the best of RNNs and state space models with innovative techniques to achieve high efficiency and performance across various domains. 本質上來說,Mamba正在重新定義AI序列建模的可能性,將RNN和狀態空間模型的優點與創新技術相結合,以在各個領域上實現高效率和高效能。 ### **RWKV: Reinventing RNNs for the Transformer Era** The RWKV architecture represents a novel approach in the realm of neural network models, integrating the strengths of Recurrent Neural Networks (RNNs) with the transformative capabilities of transformers. This hybrid architecture, spearheaded by Bo Peng and supported by a vibrant community, aims to address specific challenges in processing long sequences of data, making it particularly intriguing for various applications in Natural Language Processing (NLP) and beyond. RWKV架構代表了神經網路模型領域中一種新穎的方法,它結合了遞迴神經網路(RNN)的優勢與 Transformer的轉換能力。這種混合架構由Bo Peng帶頭並且由一個充滿活力的社群所支持,目的在於解決處理長資料序列時的特定挑戰,使其在自然語言處理(NLP)及其它領域的各種應用特別有吸引力。 **Key Features of RWKV:** - **Efficiency in Handling Long Sequences**: Unlike traditional transformers that struggle with quadratic computational and memory costs as sequence lengths increase, RWKV is designed to scale linearly. This makes it adept at efficiently processing sequences that are significantly longer than those manageable by conventional models. - **RNN and Transformer Hybrid**: RWKV combines RNNs' ability to handle sequential data with the transformer's powerful self-attention mechanism. This fusion aims to leverage the best of both worlds: the sequential data processing capability of RNNs and the context-aware, parallel processing strengths of transformers. - **Innovative Architecture**: RWKV introduces a simplified and optimized design that allows it to operate effectively as an RNN. It incorporates additional features such as TokenShift and SmallInitEmb to enhance performance, enabling it to achieve results comparable to those of GPT models. - **Scalability and Performance**: With the infrastructure to support training models up to 14B parameters and optimizations to overcome issues like numerical instability, RWKV presents a scalable and robust framework for developing advanced AI models. - **高效處理長序列**:不同於傳統的transformers,其隨著序列長度增加而面臨計算與記憶體成本呈二次方增長,RWKV的設計為線性擴展。這使得它能夠有效地處理比傳統模型可管理的序列長得多的序列。 - **RNN和Transformer的混合**:RWKV結合了RNN處理序列資料的能力和transformer強大的自注意力機制。這種融合旨在充分利用兩方面的優勢:RNNs的順序資料處理能力和Transformers的上下文感知、平行處理能力。 - **創新的架構**:RWKV引入了簡化和優化的設計,使其能夠作為RNN有效地運作。它結合了額外的功能,像是TokenShift和SmallInitEmb,來提升效能,使其能夠實現與GPT模型相當的結果。 - **可擴展性和效能**:憑藉著支援高達14B參數的訓練模型的基礎設施,以及克服數值不穩定等問題的最佳化,RWKV為開發先進的AI模型提供了可擴展且強大的框架。 **Advantages over Traditional Models:** - **Handling Very Long Contexts**: RWKV can utilize contexts of thousands of tokens and beyond, surpassing traditional RNN limitations and enabling more comprehensive understanding and generation of text. - **Parallelized Training**: Unlike conventional RNNs that are challenging to parallelize, RWKV's architecture allows for faster training, akin to "linearized GPT," providing both speed and efficiency. - **Memory and Speed Efficiency**: RWKV models can be trained and run with long contexts without the significant RAM requirements of large transformers, offering a balance between computational resource use and model performance. - **處理非常長的上下文**:RWKV可以利用數千個或者更多的tokens的上下文,超越傳統RNN的限制並實現更全面性的文本理解和生成。 - **平行化訓練**:與難以平行化的傳統RNN不同,RWKV的架構允許更快的訓練,類似於"線性化 的GPT",兼顧速度和效率。 - **記憶體和速度效率**:RWKV模型可以在長上下文中進行訓練和運行,而不需要大型transformers的大量記憶體需求,從而在計算資源使用和模型效能之間提供平衡。 **Applications and Integration:** RWKV's architecture makes it suitable for a wide range of applications, from pure language models to multi-modal tasks. Its integration into the Hugging Face Transformers library facilitates easy access and utilization by the AI community, supporting a variety of tasks including text generation, chatbots, and more. RWKV的架構使其適用於從純語言模型到多模態任務的廣泛應用。它與Hugging Face Transformers函式庫的整合有助於AI社群的輕鬆存取和使用,支援包括文本生成、聊天機器人等在內的各種任務。 In summary, RWKV represents an exciting development in AI research, combining RNNs' sequential processing advantages with the contextual awareness and efficiency of transformers. Its design addresses key challenges in long sequence modeling, offering a promising tool for advancing NLP and related fields. 總之,RWKV代表了人工智慧研究中一個令人興奮的發展,它結合了RNN的序列處理優勢與 transformers的上下文感知和效率。它的設計解決了長序列建模中的關鍵挑戰,為推進NLP和相關領域提供了一個有前景的工具。 ## Read/Watch These Resources (Optional) 1. LLM Agents: https://www.promptingguide.ai/research/llm-agents 2. LLM Powered Autonomous Agents: https://lilianweng.github.io/posts/2023-06-23-agent/ 3. Emerging Trends in LLM Architecture- https://medium.com/@bijit211987/emerging-trends-in-llm-architecture-a8897d9d987b 4. Four LLM trends since ChatGPT and their implications for AI builders: https://towardsdatascience.com/four-llm-trends-since-chatgpt-and-their-implications-for-ai-builders-a140329fc0d2 ## Read These Papers (Optional) 1. https://arxiv.org/abs/2401.13601 2. https://arxiv.org/abs/2312.00752 3. https://arxiv.org/abs/2310.14724 4. https://arxiv.org/abs/2307.06435