# The $2^k$ conjecture of Pinwheel Scheduling
---
### Pinwheel Scheduling
$A = (a_1,\ldots,a_k)$

---
### Pareto Surfaces
Fix number of tasks $k$.
Only finitely many “interesting” schedules:

---
### Pareto Surfaces $k\le 5$

---
### $2^k$ Conjecture
**Our Conjecture:**
Can solve all instances with $k$ tasks with maximum frequency $2^{k-1}$
---
### Equivalent formulations

---
### 5/6 Density Conjecture
Density $d = \dfrac1{a_1}+\cdots+\dfrac1{a_k}$
Think: Fractional solution. Do $\frac1{a_i}$ fraction of task $i$ every day.

**Conjecture (1993):**
$d\le \frac56$ implies schedule exists.
---
### Graph representation
State = $(x_1,\ldots,x_k)$; $x_i$ = time since task $i$
Example for $(a_1,a_2,a_3) = (2,4,4)$
<!-- 
-->
<img style="width:50%;" src="https://i.imgur.com/BQHcgyE.png"/>
---
{"metaMigratedAt":"2023-06-18T00:44:18.482Z","metaMigratedFrom":"YAML","title":"Pinwheel Scheduling","breaks":true,"slideOptions":"{\"slideNumber\":true,\"theme\":\"white\",\"minScale\":0.01,\"maxScale\":0.9,\"transition\":\"fade\"}","contributors":"[{\"id\":\"5cb06f72-14a1-4563-869c-126df326983a\",\"add\":1495,\"del\":147}]"}