## ANSYS Maxwell
## Lateral Misalignment
* Main resource that grades the performance of DWPT system.
## Coil Design
References:
[1] [A New Coil Structure and Its Optimization Design With Constant Output Voltage and Constant Output Current for Electric Vehicle Dynamic Wireless Charging](https://ieeexplore.ieee.org/document/8630060)
[1] 提到兩種充電道路的形式:
1. Long-track-loop,可減少逆變器 (inverter)的數量,但因導線非常長,所以[寄生電阻 (parasitic resistance)](https://zh.wikipedia.org/zh-tw/%E5%AF%84%E7%94%9F%E5%85%83%E4%BB%B6) 也會非常大,進而導致傳輸效率降低、[電磁干擾 (eletromagnetic interference)](https://en.wikipedia.org/wiki/Electromagnetic_interference) 等問題。寄生元件的作用在高頻率下愈發明顯 (電感及電容) 且難以被抵銷,在特定頻率下也可能產生共振,只能設法降低其影響。
2. Multiple individual transmitters,指一次側 (primary side) 的充電線圈分段排列而形成無線充電道路,為了減少不必要的能量損失,可根據車輛的位置決定該線圈是否開啟,即 segmentation control (中文可翻成分段致能),因此便能相對地提高充電效率。
除此之外,本文提到第二點方式可以更彈性的應用在不同的道路長度上,事實上,彎道、斜坡或是不均勻路面等等的問題,會需要應用不同的充電線圈之設計,而線圈尺寸、充電效率及成本勢必是重要的考量之一。
> Generally, there is a relatively large air gap between adjacent transmitters to eliminate the mutual coupling.
每隔一段相對大的距離擺放一次側的充電線圈以抵銷彼此間的互感?這句的用意不知違和,根據其文,大部分提出的單極 (unipolar) 與雙極 (bipolar) 線圈間隔一段距離有可能造成無功現象 (power null phenomenon),或是二次側的傳輸效率波動較大,故本篇提出 DD 與 Q 緊密排列的 DDQ 設計以解決無功現象。
:::warning
**TODO**: 根據現有的充電線圈,模擬並測試一次側線圈的擺放距離。
:::
> The structure of combining the DD and Q coils is similar to that of the traditional DDQ coil, and the difference is that the traditional DDQ coil has a smaller Q coil size.
本篇論文最大的貢獻之一在於將接收端的 DD 與 Q 線圈重疊,因它們有著相同的尺寸,彼此互感值可完全抵消,串聯後更能有穩定電壓或電流的輸出。傳送端 (transmitter) 與接收端 (receiver) 的互感值可由下圖檢視

綠色線表接收端 DD 與 Q 的線圈串聯後之互感值,可以發現相對平穩了許多。
:::warning
**TODO**: 重現此模擬圖。
:::
> Besides, the high-frequency current in each uncoupled transmitter not only results in higher losses and lower efficiency but also leads to EMI issues. Therefore, the uncoupled transmitters should be turned OFF because no energy can be transferred to the receiver coil through these uncoupled transmitters, which is called segmentation control in this paper.
分段致能可減少不必要的漏磁 (或能量損耗) 並降低電磁干擾,其需要搭配感測器 (sensor) 來實現一次側的開與關,可使用如超音波 (ultrasonic)、無線射頻識別 (radio-frequency identification, RFID) 或是霍爾感測器 (Hall effect sensor) 來偵測車輛位置,感測器安裝在一次側或二次側有不同的影響,前者不須依靠通訊來開關線圈,理論上不存在延遲 (delay),但每隔一段距離就需要一顆感測器,成本較高也較難維護;後者則是依賴通訊,必須考慮延遲的影響,但可降低成本。
DWPT 系統全覽:

根據此圖
* 一個逆變器
* 並聯七個一次側充電線圈,使用 LCC 補償電路
* $S_i,i=1,2,...,7$ 為開關,在 $M_i = 0$ 時切換為關,不為 0 時切換為開
> For the DWPT system, a CC source in transmitting coil is usually preferred, which can be easily obtained by using the LCC compensation topology avoiding using complex control methods [23].
上述段落提及對於 DWPT 系統,較為理想的供電源為穩定電流源 (constant current, CC)
電壓的相位法可表示為
\begin{equation}
\dot{U}_{in}=\frac{4U_{dc}}{\sqrt2\pi}\angle0^{\circ}.
\end{equation}
一次側充電線圈之等效自感可由調整 $C_{pi},i=1,2,...,7$ 改變
\begin{equation}
L_{pi}^{'}=L_{pi}-\frac{1}{\omega^2C_{pi}} \; (i=1,2,...,7).
\end{equation}
因為在一次側已無多餘的互感,電路參數應滿足
\begin{cases}
L_{ti}=L_{pi}^{'}=L_{pi}-\frac{1}{\omega^2C_{pi}} \\
L_{ti} \cdot C_{ti}=\frac{1}{\omega^2}
\end{cases}
$\text{for} \; i=1,2,...,7$
根據柯西荷夫 (Kirchhoff;s Law) 定理
接收端可根據電池需求更改模式,分為兩種:
1. 穩定電流 (CC mode)
2. 穩定電壓 (CV mode)

> The values of the mutual inductances and self-inductances of the magnetic coupler are measured by Agilent E4960A LCR.
互感及自感值由 [Agilent E4960A LCR](https://www.keysight.com/tw/zh/product/E4980A/precision-lcr-meter-20-hz-2-mhz.html) 儀器量測,功率則由 [功率分析儀 PW6001 HIOKI](https://hioki.tw/product-detail.php?id=243) 測得
> Bidirectional switches constructed by antiseries connected IGBTs (MOSFETs) can be used to turn ON/OFF segmented transmitters, but they are relatively expensive and require additional control [2].
參見 [雙向開關 MOSFET](https://www.homemade-circuits.com/bidirectional-switch/),關鍵字為 bidirectional power switch (BPS)。雙向開關成本較高,且需額外的控制方法,此篇論文使用 [HF161F-W Hongfa](https://www.hongfa.com/Product/Item/HF161F-W) 替換。
[2] [EV Misalignment Estimation in DWPT Systems Utilizing the Roadside Charging Pads.](https://https://ieeexplore.ieee.org/abstract/document/9464351)
估測偏移量分5種主題:
1. 解析模型 (analytical modeling of misalignment)
2. 偏移容忍之充電線圈設計 (coil design for misalignment-tolerant operation)
3. 補償偏移量效應之電路設計 (remedial strategies for compensating misalignment effects)
4. 在產生偏移量的情況下,系統參數的估測 (system parameters' estimation under misalignment conditions)
5. 偏移量估測 (misalignment estimation)
## Electric Vehicle
### Intro
本研究使用 Waffle 來搭載二次側無線充電線圈
### Actuator
本研究使用 [Dynamixel XM430-W210-T/R](https://hackmd.io/sI3XueykR9GQ_csbuiftyQ?view#4-%E5%8F%83%E8%80%83%E8%B3%87%E6%BA%90),手冊參見連結。
### Battery
[Li-Po 電池](https://electronics.stackexchange.com/questions/404395/charging-2s-lipo-with-3-wires#:~:text=That%27s%20important%20because%20overcharging%20a%20LiPo%20beyond%204.2V,cell%20technology%20will%20degrade%20the%20pack%20over%20time.)相關的問答
BMS 保護板示範
### Litz Wire
[Modeling Litz-Wire Winding Losses in High-Frequency Power Inductors](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=548808)

## Data sheet for the electronic devices