Install Tensorflow GPU 2.11 + CUDA 11.2 in WSL Ubuntu 22.04/20.04 = ###### tags: `Note` 1. Uninstall the old version ```bash= $ sudo apt-get --purge remove "*cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" "*cusolver*" "*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" $ sudo rm -r /usr/local/cuda-X.X ``` 2. Install CUDA tool kit Check [CUDA on WSL User Guide](https://docs.nvidia.com/cuda/wsl-user-guide/index.html) first because version may vary. ```bash= $ cd ~ $ sudo apt-key del 7fa2af80 $ wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin $ sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600 $ wget https://developer.download.nvidia.com/compute/cuda/11.2.2/local_installers/cuda-repo-wsl-ubuntu-11-2-local_11.2.2-1_amd64.deb $ sudo dpkg -i cuda-repo-wsl-ubuntu-11-2-local_11.2.2-1_amd64.deb $ sudo apt-key add /var/cuda-repo-wsl-ubuntu-11-2-local/7fa2af80.pub $ sudo apt-get update $ sudo apt-get -y install cuda $ export PATH=/usr/local/cuda-11.2/bin:$PATH $ export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH ``` 3. Install cuDNN Check [NVIDIA cuDNN Documentation](https://docs.nvidia.com/deeplearning/cudnn/latest/installation/linux.html) first because version may vary. ```bash= ! $ sudo apt-get install zlib1g $ tar -xvf cudnn-11.2-linux-x64-v8.1.0.77.tgz $ sudo cp cuda/include/cudnn*.h /usr/local/cuda-11.2/include $ sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-11.2/lib64 $ sudo chmod a+r /usr/local/cuda-11.2/include/cudnn*.h /usr/local/cuda-11.2/lib64/libcudnn* ``` 4. Install Tensorflow ```bash= $ conda create -n myenv python=3.9 $ conda activate myenv (myenv) $ conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0 (myenv) $ pip install tensorflow-gpu==2.11 ``` 5. Check GPU availability ```bash= (myenv) $ python >>> import tensorflow as tf >>> tf.test.is_gpu_available() ``` Should return `true` if you're lucky.
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up