# Install Pytorch on Win11 WSL2 ## [0-Install the GPU driver] https://developer.nvidia.com/cuda/wsl Download and install NVIDIA GeForce Game Ready or NVIDIA RTX Quadro Windows 11 display driver on your system with a compatible GeForce or NVIDIA RTX/Quadro card from https://developer.nvidia.com/cuda/wsl ## [1-Install WSL2 & ...] ``` $ wsl --install -d Ubuntu-18.04 $ sudo add-apt-repository universe $ sudo apt-get update $ sudo apt-get install python3-pip $ sudo pip3 install virtualenv virtualenvwrapper $ sudo rm -rf ~/get-pip.py ~/.cache/pip $ vi ~/.bashrc add 4 lines at the bottom of file # virtualenv and virtualenvwrapper export WORKON_HOME=$HOME/.virtualenvs export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3 source /usr/local/bin/virtualenvwrapper.sh $ source ~/.bashrc ``` ## [2-Install Cuda] ``` wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600 wget https://developer.download.nvidia.com/compute/cuda/11.4.0/local_installers/cuda-repo-wsl-ubuntu-11-4-local_11.4.0-1_amd64.deb sudo dpkg -i cuda-repo-wsl-ubuntu-11-4-local_11.4.0-1_amd64.deb sudo apt-key add /var/cuda-repo-wsl-ubuntu-11-4-local/7fa2af80.pub sudo apt-get update sudo apt-get -y install cuda ``` ### nVidia Version ``` $ nvtop $ nvidia-smi $ nvidia-smi -q $ nvidia-smi -l 1 $ cd /mnt/c/Users/'Nico Huang'/Desktop ``` ## [3-Install Jetson inference files only] ``` $ sudo apt-get update $ sudo apt-get install git cmake libpython3-dev python3-numpy $ git clone --recursive https://github.com/dusty-nv/jetson-inference ``` ## [4-Create pytorch virtual environment named pytorch] ``` $ mkvirtualenv pytorch -p python3 $ workon pytorch // do everytime before training # $ deactivate ``` ## [5-Install PyTorch] https://pytorch.org/get-started/locally/ ### CUDA 11.0 https://pytorch.org/get-started/previous-versions/ ``` pip3 install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html ``` Successfully installed: - dataclasses-0.8 - numpy-1.19.5 - pillow-8.4.0 - torch-1.7.1+cu110 - torchaudio-0.7.2 - torchvision-0.8.2+cu110 - typing-extensions-4.0.0 ### Verifying PyTorch ``` (pytorch) nico@Nico-ZenBook15:~$ python3 Python 3.6.9 (default, Jan 26 2021, 15:33:00) [GCC 8.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> print(torch.__version__) 1.7.1+cu110 >>> print('CUDA available: ' + str(torch.cuda.is_available())) CUDA available: True >>> a = torch.cuda.FloatTensor(2).zero_() >>> print('Tensor a = ' + str(a)) Tensor a = tensor([0., 0.], device='cuda:0') >>> b = torch.randn(2).cuda() >>> print('Tensor b = ' + str(b)) Tensor b = tensor([-0.7677, 0.7887], device='cuda:0') >>> c = a + b >>> print('Tensor c = ' + str(c)) Tensor c = tensor([-0.7677, 0.7887], device='cuda:0') >>> >>> import torchvision >>> print(torchvision.__version__) 0.8.2+cu110 ``` ### install image processing libraries including OpenCV (optional) ``` $ pip install opencv-contrib-python $ pip install scikit-image $ pip install pillow $ pip install imutils ``` ## [6-Jetson Re-training on the Cat/Dog Dataset] ``` $ cd jetson-inference/python/training/classification/data $ wget https://nvidia.box.com/shared/static/o577zd8yp3lmxf5zhm38svrbrv45am3y.gz -O cat_dog.tar.gz $ tar xvzf cat_dog.tar.gz $ cd jetson-inference/python/training/classification $ python3 train.py --model-dir=models/cat_dog data/cat_dog $ python3 onnx_export.py --model-dir=models/cat_dog ```
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up