Wave plot using normal prior ![](https://i.imgur.com/rPZGBqn.png) #### 1) Creation of new design class log_design_normal_two() ``` des <- log_design_normal_two(30, 30, 0.6, 0.83, 0.83, 0.8, 0.8) ``` What this does? applies log10 transformation to MV and TV without having to alter underlying code ![](https://i.imgur.com/tWljzsn.png) wave plot using log-t prior ![](https://i.imgur.com/VeAlxxy.png) Example 1 ``` des <- log_design_normal_two(30, 30, 0.6, -0.08092, -0.08092, 0.8, 0.8) > prior Distribution: Log t Parameters: locationlog: -0.203 scalelog: 0.0465 lower: 0.1 df: 3 > approx_unimodal(log10(rand(prior,1000000)), -0.5, 0.5) $dens [1] "t" $params mean sd df -0.03793412 0.01798629 3.00000000 > prior4 Distribution: t Parameters: location: -0.0378887556939152 scale: 0.0312649658848961 df: 3 assurance(des, prior4) # A tibble: 1 × 4 go stop inter incon <dbl> <dbl> <dbl> <dbl> 1 0.295 0.142 0 0.563 ``` Example 2 ``` > des <- design_normal_two(30, 30, 0.6, -0.08092, 0, 0.8, 0.8) > prior <- dist_logt(-0.203, 0.0465, 0.1, 3) > qdmtools::approx_unimodal(log10(rand(prior, 100000)), -0.5, 0.5) Distribution: t Parameters: location: -0.0379376141128745 scale: 0.0180681441389967 df: 3 > prior_new <- dist_t(-0.0379, 0.018) > assurance(des, prior_new) # A tibble: 1 × 4 go stop inter incon <dbl> <dbl> <dbl> <dbl> 1 0.289 0.278 0 0.432 ``` Example 9 ``` des <- design_normal_two(30, 30, 0.6, 0, 0.1761, 0.9, 0.99) prior <- dist_gamma(4.78, 1.28, 0.1) > approx_unimodal(log10(rand(prior, 100000)), -0.5, 1) $dens [1] "beta" $params alpha beta lower upper 8.262214 3.683652 -0.500000 1.000000 > db <- dist_beta(8.26, 3.68, lower = -0.5, 1) Distribution: Beta Parameters: alpha: 8.26 beta: 3.68 lower: -0.5 upper: 1 > assurance(des, db) # A tibble: 1 × 4 go stop inter incon <dbl> <dbl> <dbl> <dbl> 1 0.909 0.00278 0 0.0884 ``` Example 9 ``` > des <- design_normal_two(30, 30, 0.6, 0, 0.1761, 0.9, 0.99) > prior <- dist_gamma(4.78, 1.28, 0.5) > qdmtools::approx_unimodal(log10(rand(prior, 100000)), -0.5, 1) Distribution: Normal Parameters: mean: 0.596457274382407 sd: 0.178093152201127 > prior_new <- dist_norm(0.59812, 0.1772004) > assurance(des, prior_new) # A tibble: 1 × 4 go stop inter incon <dbl> <dbl> <dbl> <dbl> 1 0.955 0.000443 0 0.0443 ```