# 模運算 ## infro 模為Mod的音譯,Mod的涵義為求餘數 7 Mod 3 為 1 ## 性質 給定一正整數$p$,任意一個整數$n$,則一定存在等式$n = kp + r$ k, r 屬於整數,且$0 ≤ n < p$,k為n除p的商,r為n除p的餘數 ## 基本概念 - $a\ \%\ p$ 或 $a\ mod\ p$ $\implies$表示a除以p的餘數 - $a\equiv b\ \%\ p$ 或 $a ≡ b\ (mod\ p)$$\implies$同餘式,表示a除p和b除p的餘數一樣 - $p\ =\ a\ -\ b$ 則 $a ≡ b\ \%\ p$ - $a\ \%\ p = b \%\ p$ 則 $a ≡ b\ \%\ p$ - $a ≡ b\ \%\ p$ 則 $b ≡ a\ \%\ p$ - $a ≡ b\ \%\ p$ 且 $b ≡ c\ \%\ p$ 則 $a ≡ c\ \%\ p$ - $n\ \%\ p$的正負由被除數n決定 ex:7 % 3 = 1, -7 % 3 = -1, 7 % -3 = 1, -7 % -3 = -1 java、C/C++使用上述規則。但在python,結果的正負僅與除數有關 ## 運算 - $(a\ +\ b)\ \%\ p\ =\ (a\ \%\ p\ +\ b\ \%\ p)\ \%\ p$ - $(a\ -\ b)\ \%\ p\ =\ (a\ \%\ p\ -\ b\ \%\ p)\ \%\ p$ - $(a\ *\ b)\ \%\ p\ =\ (a\ \%\ p\ *\ b\ \%\ p)\ \%\ p$ - 沒有除法 - $(a\ {}^\land \ b)\ \%\ p\ =\ ((a\ \%\ p)\ {}^\land\ b)\ \%\ p)$ - $((a\ +\ b)\ \%\ p\ +\ c)\ \%\ p\ =\ (a\ +\ (b\ +\ c)\ \%\ p)\ \%\ p$ - $((a\ *\ b)\ \%\ p\ *\ c)\%\ p\ =\ (a\ *\ (b\ *\ c)\ \%\ p)\ \%\ p$ - $((a\ +\ b)\ \%\ p\ *\ c)\ \%\ p\ =\ ((a\ *\ c)\ \%\ p\ +\ (b\ *\ c)\ \%\ p)\ \%\ p$ - $a ≡ b\ \%\ p$,則 $(a\ +\ c) ≡ (b\ +\ c)\ \%\ p$ ,c為任意數 - $a ≡ b\ \%\ p$,則對於任意的正整數c,都有$(a\ *\ c) ≡ (b\ *\ c)\ \%\ p$,c為任意正整數 - $a ≡ b\ \%\ p$ 且 $c ≡ d\ \%\ p$,則 $(a\ +\ c) ≡ (b\ +\ d)\ \%\ p$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up