# Week 1: Vectors and Matrices Notes ## • Vector Operations - Vectors have both magnitude and direction. ° Example of the **dot product** between two vectors: $$ \mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta) $$ ° The dot product gives us the projection of one vector onto another. - **Vector Addition :** ° The sum of two vectors $$ \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} $$ - **Vector Subtraction :** ° The difference between vectors $$ \mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \end{bmatrix} $$ - **Multiplying a scalar Item** ° Given a scalar c and a vector v, the result of multiplying the scalar c by the vector v is: $$ c \cdot v = [c \cdot v_1, c \cdot v_2, c \cdot v_3, ..., c \cdot v_n] $$ - **Dot product between two vectors** ° The dot product of u and v is $$ \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 $$ - **Angle Between the two vectors** ° The angle between two vectors u and v can be calculated using the following formula: $$ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} $$ - **Cross product (3D)** ° The cross product of two vectors u and v is given by: $$ \mathbf{u} \times \mathbf{v} = \left[ (u_2 v_3 - u_3 v_2), (u_3 v_1 - u_1 v_3), (u_1 v_2 - u_2 v_1)\right] $$ - **Magnitude**, **Direction**,**Tangent Function** : ° Magnitude: $|\mathbf{v}| = \sqrt{x^2 + y^2}$ ° Direction: $\theta = \arccos \left( \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right)$ ° The tangent function is defined as $$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} $$ ° The inverse tangent is written as $$ \theta = \tan^{-1} \left( \frac{\sin(\theta)}{\cos(\theta)}\right) $$ ## • Trigonometric Definitions - In **Cartesian coordinates**: ° $x = r \cos(\theta)$ ° $y = r \sin(\theta)$ - In **Polar coordinates**: ° $r = \sqrt{x^2 + y^2}$ ° $\theta = \arctan \left( \frac{y}{x} \right)$ ## • Solving Linear Equations - Consider the following 2x2 system of linear equations: ° $2x + y = 5$ ° $3x - 2y = -1$ - This can be represented in matrix form: ° $A = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$ ° The goal is to find **x** and **y** that satisfy this system. ## • Reducing Matrices - Consider the matrix: $$ A = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix} $$ - We perform **row reduction** to bring it into row echelon form: 1. **Multiply row 1 by** 1/2: $$ R_1 \rightarrow \frac{1}{2} \times R_1 $$ This gives the matrix: $$ A = \begin{bmatrix} 1 & \frac{1}{2} \\ 3 & -2 \end{bmatrix} $$ 2. **Subtract** 3 X row 1 from row 2: $$ R_2 \rightarrow R_2 - 3 \times R_1 $$ This gives the matrix: $$ A = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & -\frac{7}{2} \end{bmatrix} $$ - The final row echelon form of the matrix is: $$ \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & -\frac{7}{2} \end{bmatrix} $$ ## • Linear Combinations - A **linear combination** of vectors is formed by multiplying each vector by a scalar and adding them together: ° $\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$ - Example: ° If $\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, then: ° $\mathbf{v} = a_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ ## • Linear Independence and Linear Dependence - A set of vectors is **linearly independent** if no vector in the set can be written as a linear combination of the others. Consider K vectors which cannot exist on a lower dimentional space, these vectors can be used to define any point in K - dimentional space. The rank is the number of dimentions of this space. ° Example: $\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ ° These vectors are linearly independent. - Consider three vectors placed on a 2 - dimentional plane, then the third vector is a combination of the other two vectors. These vectors are called linearly dependent vectors. ## • Basis Vectors - Standard basis vector ° In a 3-dimensional space, the three standard basis vectors are: $$ \mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $$ These vectors are called the **standard basis vectors** because they are used to represent the coordinates of any vector in 3D space. Each of these vectors has a 1 in one component and 0 in the other components. ° These vectors are linearly independent. ° All these vectors are orthogonal and forms a right angle with one another also their dot product is zero. ° Standard basis vector are special case. Otherwise bases are linearly dependent and span the vector space. ## • Matrix Operations - **Matrix-vector multiplication**: ° Given the matrix $A$ and vector $\mathbf{x}$: ° $A = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ° The result is: ° $A \mathbf{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ - **Matrix Inverse :** The **inverse** of a square matrix A is denoted by A^{-1} , and it satisfies the equation: $$ A \cdot A^{-1} = A^{-1} \cdot A = I $$ Where I is the identity matrix . - **Solving linear equations using elimination method** ° The elimination method involves adding or subtracting equations to eliminate one of the variables, making it easier to solve for the remaining variable. Consider the system of equations: $$ 2x + 3y = 12 \quad \ 4x - 3y = 6 \quad \ $$ We add both equations to eliminate y. The coefficients of y in both equations are opposites +3y and -3y, so adding them cancels out y: $$ (2x + 3y) + (4x - 3y) = 12 + 6 $$ This simplifies to: $$ 6x = 18 $$ Now, we solve for x: $$ x = \frac{18}{6} = 3 $$ Substitute x = 3 into Equation : $$ 2(3) + 3y = 12 $$ This simplifies to: $$ 6 + 3y = 12 $$ Now, solve for y : $$ 3y = 12 - 6 $$ $$ 3y = 6 $$ $$ y = \frac{6}{3} = 2 $$ The solution to the system of equations is: $$ x = 3, \quad y = 2 $$ - Identity and Inverse ° To find the inverse of a matrix A, we use the identity matrix I and perform a sequence of **row operations** on the augmented matrix [A | I] . ° Form an augmented matrix [A | I] . ° Perform row operations to convert the left part of the augmented matrix into the identity matrix. ° The right part of the augmented matrix will become the inverse of A. Consider the matrix: $$ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $$ Set up the augmented matrix : $$ \left[\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{array}\right] $$ Subtract 3 times the first row from the second row: $$ R_2 \rightarrow R_2 - 3 \times R_1 $$ $$ \left[\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{array}\right] $$ Divide the second row by -2 $$ R_2 \rightarrow \frac{1}{-2} R_2 $$ $$ \left[\begin{array}{cc|cc} 1 & 2 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 \end{array}\right] $$ Subtract 2 times the second row from the first row: $$ R_1 \rightarrow R_1 - 2 \times R_2 $$ $$ \left[\begin{array}{cc|cc} 1 & 0 & -2 & 1 \\ 0 & 1 & 1.5 & -0.5 \end{array}\right] $$ **Result** $$ A^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} $$ ## • LaTeX Practice - Try writing more LaTeX symbols, such as: ° Summation: $$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$ ° Derivatives: $\frac{d}{dx} \left( x^2 \right) = 2x$