## Test note $$ \sum_i^N K(x_i)M^i $$ Inline math?: $\sum_i^N K(x_i) M^i$ ![](https://i.imgur.com/ScgvAoP.png) # Large Mass Harmonic Oscillator on Eucledian time Info: * Eucledian time points: 3 * N = 80 * Matrix size of N^3 * Action: $S = \frac12 \sum_i \Delta_\tau \sigma x_i^2 $ * $\sigma = 1$ * Runtime ~10 minutes * Fokker-Planck equation * Should be positive eigenvalues of the equation: * $F_{\textrm{FP}} P(\textbf{x};\tau) = -\lambda P(\textbf{x};\tau)$ ## Eigenvalues: | k | $||Ax-kx||/||kx||$ | | :-------------: | :-------------: | | -1.843422+0.001579i | 0.998479 | | -2.616751-0.107733i | 0.965833 | | -2.729703+0.136284i | 1.01945 | | -3.640527+0.073839i | 1.03712 | | -3.781522-1.430333i | 0.762849 | | -3.894783+1.512824i | 0.745834 | | -5.352922-2.580163i | 0.538589 | | -5.508457+2.678970i | 0.437366 | | -7.712095+3.674526i | 0.42868 | | -10.555826-4.278824i | 0.434935 | | -10.950730+4.342183i | 0.438883 | -19.321643-0.247089i | 0.817175 | | -45.441350+0.332406i | 0.5352 | | -80.623264+0.052920i | 0.376649 | | -110.389972-0.384503i | 0.273537 | | -146.793279+0.052263i | 0.168638 | | -173.062205+0.048124i | 0.0891449 | | -186.049725+0.026397i | 0.0361323 | ---------------------- -------------------- ## Ground state Under is the ground state for the 3 eucledian time points | $x_0$ | $x_1$ | $x_2$ | |:-------------:|:-------------:|:-----:| |![](Figures/LM_HO_F_GS_x0.png) | ![](Figures/LM_HO_F_GS_x1.png) | ![](Figures/LM_HO_F_GS_x2.png) | ## First exited states Under is a plot of the first 3 exited states in euledian time $x_0 = 0$. | $1$ | $2$ | $3$ | | ------------- |:-------------:|:-----:| |![](Figures/LM_HO_F_1S_x0.png) | ![](Figures/LM_HO_F_2S_x0.png) | ![](Figures/LM_HO_F_3S_x0.png) |