--- tags: mth225 --- # Answer Key: Learning Target Quiz 2 :::info If you need more details on solutions, ask a question on Campuswire. ::: ## CA.1 1. Binary: 1101001. Octal: 151. 2. Decimal: 185. Hexadecimal: B9. 3. 380 4. 1001 0100 ## CA.2 1. 101011000 2. 10000010 3. 100111 4. Quotient = 1010, remainder = 10 ## L.1 1. * Hypothesis: $P \vee Q$, conclusion: $R$ * Negation: $(P \vee Q) \wedge (\neg R)$ * Converse: $R \rightarrow (P \vee Q)$ * Contrapositive: $(\neg R) \rightarrow \neg (P \vee Q)$ 2. * Hypothesis: Apple comes out with a new iPad; Conclusion: I won't buy a laptop * Negation: Apple came out with a new iPad and I did buy a laptop. * Converse: If I don't buy a laptop, Apple came out with a new iPad. * Contrapositive: If I do buy a laptop, Apple didn't come out with a new iPad. ## L.2 1. | $P$ | $Q$ | $P \vee Q$ | $\neg (P \vee Q)$ | | --- | --- | ---------- | ----------------- | | T | T | T | F | | T | F | T | F | | F | T | T | F | | F | F | F | T | | $P$ | $Q$ | $\neg P$ | $\neg Q$ | $(\neg P) \vee (\neg Q)$ | | --- | --- | ---------- | ----------------- | ---- | | T | T | F | F | F | T | F | F | T | T | F | T | T | F | T | F | F | T | T | T So the two statements are NOT logically equivalent. 2. | $P$ | $Q$ | $R$ | $\neg P$ | $Q \rightarrow R$ | $(\neg P) \wedge (Q \rightarrow R)$ | | :--: | :--: | :--: | :--: | :--: | :--: | | T | T | T | F | T | F | | T | F | T | F | T | F | | F | T | T | T | T | T | | F | F | T | T | T | T | | T | T | F | F | F | F | | T | F | F | F | T | F | | F | T | F | T | F | F | | F | F | F | T | T | T | ## L.3 1. $P(2)$ false, $P(11)$ true, $Q(2)$ true, $Q(20)$ true. 2. (a) False because $P(2)$ is false. (b) True because $P(11)$ is true. (c) True because $Q(2)$ is true. 3. There is at least one GVSU student who did not grow up in Michigan. ## SF.1 1.(a) $\{\dots, -18, -8, 2, 12, 22, 32, \dots \}$ (b) $\{1,2,3,4,5,6,7\}$ (c) $\{3, 11, 17\}$ 2. Many correct answers; one is $\{n \in \mathbb{N} \, : \, n \ \% \ 3 = 2\}$. 3. (a) True (b) True (c) False (d) False (e) True (f) False (because $2 \ \% \ 2 \neq 1$) (g) False (the set on the right is $\{4, 8, 12\}$) (h) True Note: On part 3, each incorrect answer was treated like a "simple" error for the entire problem, i.e. you are allowed two such answers before needing to try again.