---
tags: mth225
---
# Answer Key: Learning Target Quiz 2
:::info
If you need more details on solutions, ask a question on Campuswire.
:::
## CA.1
1. Binary: 1101001. Octal: 151.
2. Decimal: 185. Hexadecimal: B9.
3. 380
4. 1001 0100
## CA.2
1. 101011000
2. 10000010
3. 100111
4. Quotient = 1010, remainder = 10
## L.1
1.
* Hypothesis: $P \vee Q$, conclusion: $R$
* Negation: $(P \vee Q) \wedge (\neg R)$
* Converse: $R \rightarrow (P \vee Q)$
* Contrapositive: $(\neg R) \rightarrow \neg (P \vee Q)$
2.
* Hypothesis: Apple comes out with a new iPad; Conclusion: I won't buy a laptop
* Negation: Apple came out with a new iPad and I did buy a laptop.
* Converse: If I don't buy a laptop, Apple came out with a new iPad.
* Contrapositive: If I do buy a laptop, Apple didn't come out with a new iPad.
## L.2
1.
| $P$ | $Q$ | $P \vee Q$ | $\neg (P \vee Q)$ |
| --- | --- | ---------- | ----------------- |
| T | T | T | F |
| T | F | T | F |
| F | T | T | F |
| F | F | F | T |
| $P$ | $Q$ | $\neg P$ | $\neg Q$ | $(\neg P) \vee (\neg Q)$ |
| --- | --- | ---------- | ----------------- | ---- |
| T | T | F | F | F
| T | F | F | T | T
| F | T | T | F | T
| F | F | T | T | T
So the two statements are NOT logically equivalent.
2.
| $P$ | $Q$ | $R$ | $\neg P$ | $Q \rightarrow R$ | $(\neg P) \wedge (Q \rightarrow R)$ |
| :--: | :--: | :--: | :--: | :--: | :--: |
| T | T | T | F | T | F |
| T | F | T | F | T | F |
| F | T | T | T | T | T |
| F | F | T | T | T | T |
| T | T | F | F | F | F |
| T | F | F | F | T | F |
| F | T | F | T | F | F |
| F | F | F | T | T | T |
## L.3
1. $P(2)$ false, $P(11)$ true, $Q(2)$ true, $Q(20)$ true.
2. (a) False because $P(2)$ is false.
(b) True because $P(11)$ is true.
(c) True because $Q(2)$ is true.
3. There is at least one GVSU student who did not grow up in Michigan.
## SF.1
1.(a) $\{\dots, -18, -8, 2, 12, 22, 32, \dots \}$
(b) $\{1,2,3,4,5,6,7\}$
(c) $\{3, 11, 17\}$
2. Many correct answers; one is $\{n \in \mathbb{N} \, : \, n \ \% \ 3 = 2\}$.
3. (a) True
(b) True
(c) False
(d) False
(e) True
(f) False (because $2 \ \% \ 2 \neq 1$)
(g) False (the set on the right is $\{4, 8, 12\}$)
(h) True
Note: On part 3, each incorrect answer was treated like a "simple" error for the entire problem, i.e. you are allowed two such answers before needing to try again.