# 2023-01-31-NCL ## This document: https://hackmd.io/@rseteam-ncl/2023-01-31-NCL ## Links: * [Code Community](https://teams.microsoft.com/l/team/19%3aG79Rz7Mhk6rC0mhia04YCD-nj7WabLMxhnyb1YLp04A1%40thread.tacv2/conversations?groupId=7059214c-2200-4ad6-a739-9d350c74c7a9&tenantId=9c5012c9-b616-44c2-a917-66814fbe3e87) * [Data](http://swcarpentry.github.io/python-novice-gapminder/files/python-novice-gapminder-data.zip) * [JupyterHub](jupyter.ncldata.dev) * [Pre-workshop survey](https://carpentries.typeform.com/to/wi32rS?slug=2023-01-17-NCL) * [Post-workshop survey](https://carpentries.typeform.com/to/UgVdRQ?slug=2023-01-17-NCL) * [Carpentries](https://carpentries.org/) * [Code of Conduct](https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html) * [Workshop Website](https://nclrse-training.github.io/2023-01-17-NCL/) * [Programming with Python](https://carpentries-incubator.github.io/python-novice-programming-gapminder/) ## Attendance: ## Notes Variables = Letters, digits, numbers, but cannot start a variable with a number. Python is case sensitive Variable type is assigned by what you enter (string, integer, float, etc.) Use quotes to assign variable to be a string Can concatenate a string and a variable with + Cannot use a variable until you have assigned something to it !wget http://xxxx.filextension will get data from a URL !unzip filname.zip to unzip import - brings a library into the environment. import library as newvariablenameoflibrary data = pd.read_csv('data'/gapminder_gdp_oceania.csv, index_col='country') assigns which column is index data.info() tells you information about your dataframe, e.g. type data.columns - column information print(data.T) - transforms columns and rows like a pivot table series = column for pandas library data = pd.read_csv('data/gapminder_gdp_europe.csv', index_col='country') print(data.iloc[0,0]) - gives value at co-ords 0,0 in the dataframe print(data.loc['row name','column name'] to give data at location in the dataframe identified by headers print(data.loc["Albania", :]) - everything in that row print(data.loc["Italy":"Poland","gdpPercap_1962":"gdpPercap_1972"].max()) - Maximum values, can use for other statistical functions print(type(data)) will give you how you can look for what functions are available so you can search on stack overflow lists = similar to arrays