# 02 Objective functions for portfolio optim. ###### tags: `Portfolio optimization` In general, for $n$ assets, we can combine them to the overall return $\mu$ and risk $\sigma$: $$ \left\{ \begin{array}{rcl} \mu &=& \boldsymbol{\mu}^T \mathbf{w}\\ \sigma^2 &=& \mathbf{w}^T \Sigma \mathbf{w} \end{array} \right. $$ where $\mathbf{w}=[w_1, \dots, w_n]^T$, $\boldsymbol{\mu}=[\mu_1, \dots, \mu_n]^T$, and $\Sigma$ is the covariance matrix of these $n$ assets. There are several basic criteria for optimization: * Minimize risk with fixed return: Given a return $\mu$, find the weights to minimize the overall variance $\sigma^2$. (給定預期報酬值,最佳投資組合將產生最小風險。) $$ \min_{\mathbf{w}} \sigma^2=\mathbf{w}^T \Sigma \mathbf{w} \\ s.t. \left\{ \begin{array}{l} \mathbf{w}^T\mathbf{1}=1\\ \boldsymbol{\mu}^T \mathbf{w}=r \end{array} \right. $$ where $\mathbf{1}=[1, \dots, 1]^T$. * Maxmimize return with fixed risk: Given a variance $\sigma^2$, find the weights to maximize the overall return $\mu$. (給定風險下,最佳投資組合將產生預期報酬最大值。) $$ \max_{\mathbf{w}} \mu=\boldsymbol{\mu}^T \mathbf{w} \\ s.t. \left\{ \begin{array}{l} \mathbf{w}^T\mathbf{1}=1\\ \mathbf{w}^T \Sigma \mathbf{w}=\sigma_0^2 \end{array} \right. $$ * Minimize risk regardless of return: Find the weights to minimize the overall variance $\sigma^2$ regardless of the return. (讓最佳投資組合將產生最小風險,而完全不看報酬。) $$ \min_{\mathbf{w}} \sigma^2=\mathbf{w}^T \Sigma \mathbf{w} \\ s.t. \mathbf{w}^T\mathbf{1}=1. $$ * Maximize the Sharpe ratio $$ \max_{\mathbf{w}} \frac{\mu-\mu_0}{\sigma} \\ s.t. \mathbf{w}^T\mathbf{1}=1\\ $$ * Maximize the difference between return and risk $$ \max_{\mathbf{w}} \mu-\beta \sigma \\ s.t. \mathbf{w}^T\mathbf{1}=1\\ $$