# 04 Portfolio optim.: Min. risk ###### tags: `Portfolio optimization` In general, for $n$ assets, we can combine them to the overall return $\mu$ and risk $\sigma$: $$ \left\{ \begin{array}{rcl} \mu &=& \boldsymbol{\mu}^T \mathbf{w}\\ \sigma^2 &=& \mathbf{w}^T \Sigma \mathbf{w} \end{array} \right. $$ where $\mathbf{w}=[w_1, \dots, w_n]^T$, $\boldsymbol{\mu}=[\mu_1, \dots, \mu_n]^T$, and $\Sigma$ is the covariance matrix of these $n$ assets. Suppose we want to minimize the overall risk regardless of the overall return, then the problem can be formulated as follows: $$ \min_{\mathbf{w}} \sigma^2=\mathbf{w}^T \Sigma \mathbf{w} \\ \text{s.t. } \mathbf{1}^T \mathbf{w}=1\\ $$ where $\mathbf{1}=[1, \dots, 1]^T$. To find the solution to this constrained optimization problem, we can formulate a new objective function using the Lagrange multiplier: $$ \max_{\mathbf{w}, \lambda} J(\mathbf{w}, \lambda)=\mathbf{w}^T \Sigma \mathbf{w} + \lambda(\mathbf{1}^T \mathbf{w}-1). $$ By taking the gradient and set it to zero, we have $$ \nabla_\boldsymbol{w} J(\boldsymbol{w}, \lambda)=2\Sigma\mathbf{w}+\boldsymbol{1}\lambda=0 \Rightarrow \mathbf{w}=-\frac{1}{2}\Sigma^{-1}\boldsymbol{1}\lambda $$ Since $\mathbf{1}^T \mathbf{w}=1$, we have $$ -\frac{1}{2}\boldsymbol{1}^T\Sigma^{-1}\boldsymbol{1}\lambda=1 \Rightarrow \lambda=-\frac{2}{\boldsymbol{1}^T\Sigma^{-1}\boldsymbol{1}}. $$ Therefore $$ \mathbf{w}=\frac{\Sigma^{-1}\boldsymbol{1}}{\boldsymbol{1}^T\Sigma^{-1}\boldsymbol{1}} $$ And the corresponding minimum value of risk is as follows: $$ \sigma^2=\mathbf{w}^T \Sigma \mathbf{w} =\frac{\boldsymbol{1}^T\Sigma^{-1}}{\boldsymbol{1}^T\Sigma^{-1}\boldsymbol{1}} \Sigma \frac{\Sigma^{-1}\boldsymbol{1}}{\boldsymbol{1}^T\Sigma^{-1}\boldsymbol{1}} =\frac{1}{\boldsymbol{1}^T\Sigma^{-1}\boldsymbol{1}} $$ (Note that $\boldsymbol{1}^T\Sigma^{-1}\boldsymbol{1}$ is equal to the sum of all elements in $\Sigma^{-1}$.)