# Basic formulas for random variables ###### tags: `Mathematics` ### 基本數學 Mean and variance for random variables $X$ and $Y$ * Definition * Mean: $\mu_X = E(X)$ * Variance: $\sigma_X^2 = V(X) \triangleq E((X-\mu_X)^2) = E(X^2)-\mu_X^2$ * Covariance: $\sigma_{XY}=\sigma_{YX}=E((X-\mu_X)(Y-\mu_Y)) = E(XY)-\mu_X\mu_Y$ * Basic formulas for a single variable * $E(aX)=aE(X) \Rightarrow \mu_{aX}=a\mu_X$ * $V(aX)=a^2V(X) \Rightarrow \sigma_{aX}^2=a^2\sigma_{X}^2$ * Extension to two variables (not necessarily independent) * $E(aX+bY)=aE(X)+bE(Y) \\ \Rightarrow \mu_{aX+bY}=a\mu_X+b\mu_Y$ * $V(aX+bY)=a^2V(X)+b^2V(Y)+2abE((X-\mu_X)(Y-\mu_Y)) \\ \Rightarrow \sigma_{aX+bY}^2=a^2\sigma_X^2+b^2\sigma_Y^2+2ab\sigma_{XY}=a^2\sigma_X^2 + b^2\sigma_Y^2+2ab\sigma_X\sigma_Y\rho_{XY}$ Derivation of the above expression: $$ \begin{array}{rcl} V(aX+bY)&=&E((aX+bY-E(aX+bY))^2)\\ &=& E((aX+bY-a\mu_X-b\mu_Y))^2)\\ &=& E((a(X-\mu_X)+b(Y-\mu_Y))^2)\\ &=& E(a^2(X-\mu_X)^2+b^2(Y-\mu_Y)^2+2ab(X-\mu_X)(Y-\mu_Y))\\ &=& a^2E((X-\mu_X)^2)+b^2E((Y-\mu_Y)^2)+2abE((X-\mu_X)(Y-\mu_Y))\\ &=& a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\sigma_{XY}\\ &=& a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\sigma_X\sigma_Y\rho_{XY}\\ \end{array} $$ where $\rho_{XY}=\sigma_{XY}/(\sigma_X\sigma_Y)$ is the correlation coefficient between $X$ and $Y$, with $-1 \leq \rho_{XY} \leq 1$. <!-- $\rho_{XY}=\frac{\sigma_{XY}}{\sigma_X\sigma_Y}$ --> Exercises 1. Given a fair dice with its face value as a discrete random variable X, what are $E(X)$ and $V(X)$? **Answer**: $E(X)=7/2$, $V(X)=35/12$. 1. Given two fair dices with their face values as two discrete random variables X and Y, what are $E(Z)$ and $V(Z)$ if $Z=X+3Y$? **Answer**: $E(X)=14$, $V(X)=175/6$. 1. Define two random variables as follows: * X: face values $[1,2,3,4,5,6]$ of a dice * Y: face values $[0 for tails, 1 for heads]$ of an unfair coin, with $P(tails)=1/3$ and $P(heads)=2/3$. What are $E(Z)$ and $V(Z)$ if $Z=X+2Y$? 1. Define two random variables as follows: * X: face values $[1,2,3,4,5,6]$ of a dice * Y: face values $[0 for tails, 1 for heads]$ of an unfair coin, with $P(tails)=1/3$ and $P(heads)=2/3$. What are $E(Z)$ and $V(Z)$ if $Z$ is defined as follows? $$ Z=\left\{ \begin{array}{rl} 2, & \text{if } X \geq 3,\\ Y, & \text{otherwise}. \end{array} \right. $$ 1. Define two random variables as follows: * X: Gaussian PDF with $[\mu_X, \sigma_X^2]=[0, 4]$. * Y: Uniform PDF with $[l_X, u_X]=[1, 3]$. What are $E(Z)$ and $V(Z)$ if $Z=3X+4Y$? 1. Define two random variables as follows: * X: Gaussian PDF with $[\mu_X, \sigma_X^2]=[0, 4]$. * Y: Uniform PDF with $[l_X, u_X]=[1, 3]$. What are $E(Z)$ and $V(Z)$ if $Z$ is defined as follows? $$ Z=\left\{ \begin{array}{rl} 2Y, & \text{if } X \leq \mu_X,\\ Y, & \text{otherwise}. \end{array} \right. $$