# Workshop Amazon SageMaker para Grupo AJE Bienvenidos al workshop de Amazon SageMaker, el cual les ayudará a entender de forma práctica cómo implementar un pipeline de Machine Learning en AWS. ## Encuesta (CSAT): ## Agenda Workshop | Hora | Tema | Recursos/Enlaces | | ------ | ----------- | ----------- | 09:00 - 10:00|Introduction to Amazon SageMaker| 10:00 - 10:20|Lab 1. SageMaker Studio Notebooks & Feature Engineering| [Laboratorio](https://catalog.us-east-1.prod.workshops.aws/workshops/63069e26-921c-4ce1-9cc7-dd882ff62575/en-US/lab1/option2) 10:20 - 10:45|Lab 2. Train, Tune and Deploy model using SageMaker Built-in Algorithm| [Laboratorio](https://catalog.us-east-1.prod.workshops.aws/workshops/63069e26-921c-4ce1-9cc7-dd882ff62575/en-US/lab2) 10:45 - 11:00|Break| 11:00 - 11:30|Create Model, Prediction and Inference| 11:30 - 13:00|Lab 3. SageMaker Pipelines| [Laboratorio](https://catalog.us-east-1.prod.workshops.aws/workshops/63069e26-921c-4ce1-9cc7-dd882ff62575/en-US/lab6) ## Ingreso a la consola de AWS * [Lab Setup](https://catalog.us-east-1.prod.workshops.aws/join?access-code=bde4-063714-69](https://catalog.us-east-1.prod.workshops.aws/join?access-code=bde4-063714-69)) ## Lab 1. SageMaker Studio Notebooks & Feature Engineering Servicios Clave: * Amazon SageMaker Studio Trabajaremos con la **Opción 2: Numpy and Pandas** ## Lab 2. Train, Tune and Deploy model using SageMaker Built-in Algorithm Servicios Clave: * Amazon SageMaker Training * Amazon SageMaker Hosting * Amazon SageMaker AutoTuning (HPO) ## Lab 3. SageMaker Pipelines Servicios Clave: * Amazon SageMaker Pipelines * Amazon SageMaker Model Registry ## Material complementario Los siguientes recursos les ayudarán a profundizar en los temas revisados durante el workshop: * [AWS Ramp-Up Guide: Machine Learning](https://d1.awsstatic.com/training-and-certification/ramp-up_guides/Ramp-Up_Guide_Machine_Learning.pdf) (Training & Certification) * [MLOps Engineering on AWS](https://aws.amazon.com/training/classroom/mlops-engineering-on-aws/) (Training & Certification) * [Amazon SageMaker Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html) (Guide) * [MLOps con SageMaker Pipelines y SageMaker Projects](http://amazon-sagemaker.com/es/mlops/) (Workshop) * [Roadmap para una base empresarial de MLOps con Amazon SageMaker](https://aws.amazon.com/es/blogs/aws-spanish/roadmap-para-una-base-empresarial-de-mlops-con-amazon-sagemaker/) (AWS Blogs) * [AWS MLOps Framework](https://aws.amazon.com/solutions/implementations/aws-mlops-framework/) (AWS Solutions Implementation) * [Build consistent and portable ML environments with containers](https://www.youtube.com/watch?v=JTpYGq_N2Co) (re:Invent 2020) * [Amazon SageMaker Example Notebooks](https://sagemaker-examples.readthedocs.io/en/latest/) * [Amazon SageMaker Python SDK](https://sagemaker.readthedocs.io/en/stable/index.html) * [Configuring Amazon SageMaker Studio for teams and groups with complete resource isolation](https://aws.amazon.com/blogs/machine-learning/configuring-amazon-sagemaker-studio-for-teams-and-groups-with-complete-resource-isolation/) (AWS Blogs) * [Introducing the Amazon SageMaker Serverless Inference Benchmarking Toolkit](https://aws.amazon.com/blogs/machine-learning/introducing-the-amazon-sagemaker-serverless-inference-benchmarking-toolkit/) (AWS Blogs)