# A Review of Classical and Nonclassical Nucleation Theories [Cryst. Growth Des. 2016, **16**, 11, 6663–6681](https://pubs.acs.org/doi/10.1021/acs.cgd.6b00794) ## Abstract Classical Nucleation Theory $\leftrightarrow$ nonclassical two-step pathway approach (diffuse interface theory and density functional theory) ## 1. Introduction Nucleation : Formation of a new thermodynamic phase from an od phase with high free energy to low ## 2. Nucleation Theories Homogeneous nucleation : No rule for foreign surfaces. Large supersaturations are needed.($\leftrightarrow$Heterogeneous nucleation) CNT : phenomenological approach. Monte Carlo and MD : using first principals. ### 2.1. Classical Nucleation Theory CNT : Prediction of nucleation rates. Volmer, Weber, Becker, Doring, Frenkel. \begin{eqnarray} \Delta G = \frac{-4\pi r^3}{3\nu}k_BT \ln S + 4\pi r^2\sigma \tag{1} \end{eqnarray} > Definition $\Delta G$ : The change in the free energy of the system $r$ : Spherical nucleus of radius $\nu$ : The volume of single molecule $\sigma$ : The surface energy of interface $S = P/P^*$ : The vapor saturation ratio $k_B$ : The Boltzmann constant $T$ : The temperature > Derivation > $\Delta G$ is the change in Gibbs free energy when vapor turns to ice. Thus \begin{eqnarray} \Delta G =&& G_f - G_i\\ =&& N(\mu_{xs}^f-\mu_{xg}^i) + 4\pi r^2\sigma \tag{A1} \end{eqnarray} where \begin{eqnarray} G_f =&& \mu_{xs}^f N + 4\pi r^2\sigma,\\ G_i =&& \mu_{xg}^i N. \end{eqnarray} Here, $f,i$ represents final and initial, and we define $\mu_{xg},\mu_{xs}$ as chemical potential of $x$ in gas and solid phase respectively, $\sigma$ as surface tension, and $N$ as number of molucules. When in the isoterm condition and the final state is at equibrium, the relation between $\mu_{ig},\mu_{is}$ will be \begin{eqnarray} &&\mu_{xs}^f = \mu_{xg}^f = \mu_{xg}^i + k_BT \ln \frac{p^* }{p}\\ &&\therefore \mu_{xs}^f-\mu_{xg}^i = k_BT \ln \frac{p^* }{p} = -k_BT \ln \frac{p}{p^* }\tag{A2} \end{eqnarray} By equation(A1) and (A2), \begin{eqnarray} \Delta G = -Nk_BT \ln \frac{p}{p^* } + 4\pi r^2\sigma. \end{eqnarray} $\Delta G$ passes through a maximum at $r^*$. \begin{eqnarray} \Delta G^* =\frac{16\pi \sigma^3\nu^2}{3k_B^2T^2 \ln S^2}\tag{2} \end{eqnarray} The nuclation rate, $J$ is expressed as follows. ($J \leftrightarrow \sigma$) \begin{eqnarray} J =&& A\exp\left(-\frac{\Delta G^* }{k_B T}\right)\\ =&& A\exp\left(-\frac{16\pi \sigma^3\nu^2}{3k_B^3T^3 \ln S^2}\right)\tag{3} \end{eqnarray} Critical nuclei : 10-1000 molecules.(1000 : phenol, naphtthalene, azobenzene) Assumtions of CNT are $\mathrm{(a)}$ the nucleus can be described with the same macroscopic properties(density, structure, composition) of the stable phase, $\mathrm{(b)}$ the nucleus is spherical and the interface between the nucleus and the solution is a sharp boundary, $\mathrm{(c)}$ vapor-liquid interface is approximated as planar, <u>regardless of critical cluster size</u>. ### 2.2. Predictions of CNT in Vapor−Liquid Systems ### 2.3. Predictions of CNT in Metallic Vapor Systems ### 2.4. Predictions of CNT in Glass Systems ### 2.5. Predictions of CNT in Supercooled Liquid Metals and Alloy Systems ## 3. Fusion of extended modified liquid drop model with dynamic nucleation theory (EMLD-DNT) model ## 4. Density functional theory ## 5. Diffuse interface theory ## 6. Non-nucleation theories pathways ## 7. Single steps or multisteps? ## 8. Thermodynamic treatment ## 9. Conclusion