# Deutsch Josza Algorithm A quantum algorithm to determine whether the function $f(x)$ is constant or random. ## Procedures \begin{eqnarray} \left|0\right>^{\otimes N}\left|1\right> \to&& \left|+\right>^{\otimes N}\left|1\right>\\ =&& \frac{1}{\sqrt{2}^n}\sum_{x = 0}^{2^n-1} \left|x\right> \left|-\right> \\ \to&& \frac{1}{\sqrt{2}^n}\sum_{x = 0}^{2^n-1} \left|x\right> \frac{1}{\sqrt{2}} \left(\left|0 +f(x)\right> - \left|1+f(x)\right>\right) \\ =&& \frac{1}{\sqrt{2}^n}\sum_{x = 0}^{2^n-1} (-1)^{f(x)}\left|x\right> \left|-\right>\\ \to&& \end{eqnarray} Finally measure the probability that the register $N$ qubits is $\left|0\right>^{\otimes N}$.