# Task 1 ## RSA Khác với mã hóa đối xứng, RSA là mã hóa phi đối xứng, có 2 khóa khác nhau là khóa riêng tư và khóa công khai test<sup>(test)</sup> **Tạo khóa:** Chọn 2 số nguyên tố lớn p và q rất lớn, p!=q và ngẫu nhiên tính n = p\*q tính phi = (p-1)\*(q-1) Chọn một số tự nhiên e sao cho 1 < e < phi, gcd(e,phi)=1 (e thường là 65537) Tính khóa bí mật d = pow(e,-1,phi) hay e\*d =1 (mod phi) **Giải thích cơ chế tạo khóa** RSA bảo mật dựa trên bài toán khó giải là phân tích thừa số nguyên tố cần chọn p và q là số nguyên tố để khi phân tích n ra thừa số nguyên tố chỉ nhận được p và q, cần chọn số rất lớn để attacker không thể phân tích n trong thời gian ngắn, tuy nhiên cũng cần chú ý chọn độ lớn phù hợp để tối ưu bộ nhớ và hiệu năng về hàm euler phi ![image](https://hackmd.io/_uploads/BkjrDO200.png) với n =p\*q theo công thức hàm euler -> phi=(p-1)\*(q-1) trong một số trường hợp đặc biệt, sẽ xuất hiện 1 số biến thể của RSA như n=p\*p\*q khi đó theo công thức ta tính phi = p\*(p-1)\*(q-1) hoặc n=p\*q\*r thì phi =(p-1)\*(q-1)\*(r-1) cần chọn e với gcd(e,phi)=1 vì để có thể tính d = inverse(e,phi) **Mã hóa:** m là bản rõ (m<n) tính c = m<sup>e</sup> (mod n) hay c=pow(m,e,n) c là bản mã **Giải mã** do e\*d=1 (mod phi) -> c<sup>d</sup>= m<sup>(e\*d)</sup>=m (mod n) vậy để giải mã từ bản mã ta tính c<sup>d</sup> %n hay pow(c,d,n) ## Các phương pháp tấn công phổ biến ### Phân tích thừa số nguyên tố Đối với n được tạo thành từ p hoặc q bé sẽ có thể bị tấn công vén cạn trong khoảng thời gian ngắn hoặc tuy n an toàn nhưng có thể bị tấn công thư viện bởi n đã bị phân tích thừa số nguyên tố trong quá khứ trang web để kiểm tra: https://www.factordb.com/ ![image](https://hackmd.io/_uploads/B1nAhikeJl.png) ### Common modulus **External attack** giả sử một người gửi cùng một thông điệp cho nhiều người tuy nhiên chỉ thay đổi khóa công khai e và bằng cách nào đấy attacker bắt được tập chứa c,n,e của mỗi người với: ``` c1=pow(m,e1,n) #người nhận 1 c2=pow(m,e2,n) #người nhận 2 ``` ta tính u, v với u\*e1 + v\*e2 = 1 (https://vi.wikipedia.org/wiki/Gi%E1%BA%A3i_thu%E1%BA%ADt_Euclid_m%E1%BB%9F_r%E1%BB%99ng) do e1, e2 đều lớn hơn 0 nên ta chỉ xét extended gcd trong trường hợp a,b>0 cho dễ hình dung Thuật toán: ``` #bài toán a*x+b*y=1 với a,b là các số nguyên dương đã cho, tìm các số nguyên x,y cho: a, b đặt: x0=1, x1=0, y0=0, y1=1 * tính: r=a%b (chia lấy dư) nếu: r=0, trả về b, x=0, y=1, dừng chương trình tính: q=a//b (chia lấy phần nguyên) tính: x=x0-x1*q, y=y0-y1*q gán: a=b, b=r, x0=x1, x1=x, y0=y1, y1=y nếu b>0, lặp lại bước * ``` -có thể sử dụng thư viện có sẵn trong python để tính u, v ```python= from egcd import* print(egcd(a,b)) ``` đã tìm được u và v, ta có thể lấy lại m bằng cách: c1<sup>u</sup>\*c2<sup>v</sup> =m<sup>(u\*e1)</sup> \* m<sup>(v\*e2)</sup> = m<sup>(u\*e1 + v\*e2)</sup> = m<sup>1</sup> = m ``` ->m = (pow(c1,u,n) * pow(c2,v,n)) %n ``` ### Small public exponent đối với khóa công khai e nhỏ khiến cho m<sup>e</sup><n hay c=m<sup>e</sup> mod n = m<sup>e</sup> ->mất tác dụng->ta lấy căn bậc e của c ### Hastad’s Broadcast Attack giả sử 1 người nào đó gửi cùng một thông điệp cho nhiều người mà chỉ thay đổi khóa p,q và giữ lại e giống nhau ``` m**e=c1 mod n1 #người nhận 1 m**e=c2 mod n2 #người nhận 2 m**e=c3 mod n3 #người nhận 3 ``` dựa trên định lý số dư trung quốc ta tìm được m<sup>e</sup> ![image](https://hackmd.io/_uploads/H1EphSP1Jx.png) sau khi lấy được m<sup>e</sup>->đưa về dạng **Small public exponent**-> lấy căn bậc e được m ### Fermat’s attack Giả sử 1 người tạo cặp khóa p, q tuy nhiên vô tình để giá trị của p và q quá gần nhau, lúc này attacker có thể khai thác bằng tấn công **Fermat’s Factorization Method** tấn công này hiệu quả đối với p-q\<n<sup>1/4</sup> tức với p và q gần nhau ta có thể khai thác để tấn công phương pháp: do n=p\*q -> n=(a-b)\*(a+b) -> n=a<sup>2</sup>-b<sup>2</sup> ->a<sup>2</sup>-n=b<sup>2</sup> \-trước tiên ta lấy phần nguyên của căn bậc hai n \-a=iroot(n,2)[0] ~~(hàm iroot(a,b) trong thư viện gmpy2 tính căn bậc b của a, trả về 1 giá trị int và 1 bool kiểm tra)~~ * \-gán b2=a<sup>2</sup>-n \-nếu iroot(b2,2)[1]=```True``` thì trả về p=a-iroot(b2,2)[0], q=a+iroot(b2,2)[0] \-nếu iroot(b2,2)[1]=```False``` thì tiếp tục gán a=a+1 và lặp lại bước * ### Wiener’s attack Thông thường khóa e là số nguyên tố khá bé (thường là 65537) dẫn đến d khá lớn giả sử, không biết cố ý hay vô ý, người nhận gửi nhầm d thay cho e hoặc người nhận tạo khóa d quá nhỏ để người gửi dùng cặp khóa (e,n) mã hóa thông điệp m dẫn đến mã hóa có thể bị attacker tấn công bằng **Wiener’s attack** tham khảo: https://cryptohack.gitbook.io/cryptobook/untitled/low-private-component-attacks/wieners-attack Wiener's attack là tấn công sử dụng liên phân số để tìm d với d có giá trị nhỏ d\<(1/3)\*n<sup>0.25</sup> phương pháp: do e\*d=1+k\*phi -> e/phi ≈ k/d n≈phi nên ta lấy xấp xỉ e/n ≈ k/d tìm liên phân số của e/d từ các cặp k,d ta tính phi=(e\*d-1)/k và nghiệm của phương trình ```x**2-(n-phi+1)*x+n=0``` nếu tìm được nghiệm x nguyên, ta tìm được d, nếu x không nguyên, ta tiếp tục với cặp k,d tiếp theo cho đến khi thỏa mãn code mẫu: ```python= from Crypto.Util.number import long_to_bytes def wiener(e, n): # Chuyển e/n thành liên phân số cf = continued_fraction(e/n) convergents = cf.convergents() for kd in convergents: k = kd.numerator() d = kd.denominator() # kiểm tra xem k, d có thỏa mãn hay không if k == 0 or d%2 == 0 or e*d % k != 1: continue phi = (e*d - 1)/k # Create the polynomial x = PolynomialRing(RationalField(), 'x').gen() f = x^2 - (n-phi+1)*x + n roots = f.roots() # kiểm tra xem có có trả về 2 nghiệm nguyên phân biệt hay không if len(roots) != 2: continue # Check if roots of the polynomial are p and q p,q = int(roots[0][0]), int(roots[1][0]) if p*q == n: return d return None # Test to see if our attack works if __name__ == '__main__': n = 6727075990400738687345725133831068548505159909089226909308151105405617384093373931141833301653602476784414065504536979164089581789354173719785815972324079 e = 4805054278857670490961232238450763248932257077920876363791536503861155274352289134505009741863918247921515546177391127175463544741368225721957798416107743 c = 5928120944877154092488159606792758283490469364444892167942345801713373962617628757053412232636219967675256510422984948872954949616521392542703915478027634 d = wiener(e,n) assert not d is None, "Wiener's attack failed :(" print(long_to_bytes(int(pow(c,d,n))).decode()) ``` Phương pháp boneh-durfee là bản mở rộng của wiener, có thể tìm d với d lên tới n<sup>0,292</sup> với khóa d được tìm thấy, attacker dễ dàng lấy được thông điệp m bằng cách tính c<sup>d</sup> (mod n) ## cryptohack ### Modular Exponentiation Tìm kết quả của 101<sup>17</sup> % 22663 ```python= print(pow(101, 17, 2263)) #19906 ``` ### Public Keys mã hóa số 12 với e=65537, p=17, q=23 ```python= p = 17 q = 23 n = p*q e = 65537 m = 12 c = pow(m, e, n) print(c) #301 ``` ### Euler's Totient cho: p = 857504083339712752489993810777 q = 1029224947942998075080348647219 tìm phi? ```python= p = 857504083339712752489993810777 q = 1029224947942998075080348647219 phi = (p-1)*(q-1) print(phi) #882564595536224140639625987657529300394956519977044270821168 ``` ### Private Keys cho: e = 65537 p = 857504083339712752489993810777 q = 1029224947942998075080348647219 tìm d? ```python= p = 857504083339712752489993810777 q = 1029224947942998075080348647219 d = pow(e,-1,(p-1)*(q-1)) print(d) #121832886702415731577073962957377780195510499965398469843281 ``` ### RSA Decryption cho: n = 882564595536224140639625987659416029426239230804614613279163 e = 65537 c = 77578995801157823671636298847186723593814843845525223303932 giải mã c? ->factor n bằng factordb được p và q ```python= n = 882564595536224140639625987659416029426239230804614613279163 e = 65537 c = 77578995801157823671636298847186723593814843845525223303932 p = 857504083339712752489993810777 q = 1029224947942998075080348647219 d = pow(e,-1,(p-1)*(q-1)) m = pow(c, d, n) print(pt) #13371337 ``` ### RSA Signatures để xác thực tính toàn vẹn của tin nhắn, ta ký tin nhắn với hàm băm của tin nhắn bản rõ m c = m\*\*e0 mod n0 tính hash của m: H(m) và mã hóa s=pow(H(m),d1,n1) người nhận cần giải mã tin nhắn m =pow(c,d0,n0) và tính H(m) = pow(S,e1,n1) người nhận tiếp tục tính hash của m và đối chiếu với H(m), nếu trùng khớp thì tin nhắn toàn vẹn, chưa bị thay đổi như vậy cần đến 2 cặp khóa ```python= from Crypto.Util.number import bytes_to_long from Crypto.Hash import SHA256 n = 15216583654836731327639981224133918855895948374072384050848479908982286890731769486609085918857664046075375253168955058743185664390273058074450390236774324903305663479046566232967297765731625328029814055635316002591227570271271445226094919864475407884459980489638001092788574811554149774028950310695112688723853763743238753349782508121985338746755237819373178699343135091783992299561827389745132880022259873387524273298850340648779897909381979714026837172003953221052431217940632552930880000919436507245150726543040714721553361063311954285289857582079880295199632757829525723874753306371990452491305564061051059885803 d = 11175901210643014262548222473449533091378848269490518850474399681690547281665059317155831692300453197335735728459259392366823302405685389586883670043744683993709123180805154631088513521456979317628012721881537154107239389466063136007337120599915456659758559300673444689263854921332185562706707573660658164991098457874495054854491474065039621922972671588299315846306069845169959451250821044417886630346229021305410340100401530146135418806544340908355106582089082980533651095594192031411679866134256418292249592135441145384466261279428795408721990564658703903787956958168449841491667690491585550160457893350536334242689 e = 65537 m = b'crypto{Immut4ble_m3ssag1ng}' H = SHA256.new(m) S = pow(bytes_to_long(H.digest()), d, n) print(S) #13480738404590090803339831649238454376183189744970683129909766078877706583282422686710545217275797376709672358894231550335007974983458408620258478729775647818876610072903021235573923300070103666940534047644900475773318682585772698155617451477448441198150710420818995347235921111812068656782998168064960965451719491072569057636701190429760047193261886092862024118487826452766513533860734724124228305158914225250488399673645732882077575252662461860972889771112594906884441454355959482925283992539925713424132009768721389828848907099772040836383856524605008942907083490383109757406940540866978237471686296661685839083475 ``` ### Factoring cho n=510143758735509025530880200653196460532653147 phân tích ra thừa số nguyên tố? giải: bỏ vào https://factordb.com/ ->n=19704762736204164635843\*25889363174021185185929 ### Inferius Prime Source code: ```python= #!/usr/bin/env python3 from Crypto.Util.number import getPrime, inverse, bytes_to_long, long_to_bytes, GCD e = 0x10001 # n will be 8 * (100 + 100) = 1600 bits strong (I think?) which is pretty good p = getPrime(100) q = getPrime(100) phi = (p - 1) * (q - 1) d = inverse(e, phi) n = p * q FLAG = b"crypto{???????????????}" pt = bytes_to_long(FLAG) ct = pow(pt, e, n) print(f"n = {n}") print(f"e = {e}") print(f"ct = {ct}") pt = pow(ct, d, n) decrypted = long_to_bytes(pt) assert decrypted == FLAG #n = 984994081290620368062168960884976209711107645166770780785733 #e = 65537 #ct = 948553474947320504624302879933619818331484350431616834086273 ``` giải: bỏ n vào factordb n=848445505077945374527983649411\*1160939713152385063689030212503 ```python= from Crypto.Util.number import* n=984994081290620368062168960884976209711107645166770780785733 p=848445505077945374527983649411 q=n//p e=65537 c=948553474947320504624302879933619818331484350431616834086273 d=pow(e,-1,(p-1)*(q-1)) print(long_to_bytes(pow(c,d,n))) #b'crypto{N33d_b1g_pR1m35}' ``` ### Monoprime Ta nhận thấy n là số nguyên tố ->n=p ->phi= n-1 ```python= from Crypto.Util.number import* n = 171731371218065444125482536302245915415603318380280392385291836472299752747934607246477508507827284075763910264995326010251268493630501989810855418416643352631102434317900028697993224868629935657273062472544675693365930943308086634291936846505861203914449338007760990051788980485462592823446469606824421932591 e = 65537 c = 161367550346730604451454756189028938964941280347662098798775466019463375610700074840105776873791605070092554650190486030367121011578171525759600774739890458414593857709994072516290998135846956596662071379067305011746842247628316996977338024343628757374524136260758515864509435302781735938531030576289086798942 d = pow(e,-1,n-1) print(long_to_bytes(pow(c,d,n))) #b'crypto{0n3_pr1m3_41n7_pr1m3_l0l}' ``` ### Square Eyes ta nhận thấy n=p\*p ![Screenshot 2024-10-04 025740](https://hackmd.io/_uploads/r163C9nRC.png) ->phi =p*(p-1) ```python= from Crypto.Util.number import* from gmpy2 import* n = 535860808044009550029177135708168016201451343147313565371014459027743491739422885443084705720731409713775527993719682583669164873806842043288439828071789970694759080842162253955259590552283047728782812946845160334801782088068154453021936721710269050985805054692096738777321796153384024897615594493453068138341203673749514094546000253631902991617197847584519694152122765406982133526594928685232381934742152195861380221224370858128736975959176861651044370378539093990198336298572944512738570839396588590096813217791191895941380464803377602779240663133834952329316862399581950590588006371221334128215409197603236942597674756728212232134056562716399155080108881105952768189193728827484667349378091100068224404684701674782399200373192433062767622841264055426035349769018117299620554803902490432339600566432246795818167460916180647394169157647245603555692735630862148715428791242764799469896924753470539857080767170052783918273180304835318388177089674231640910337743789750979216202573226794240332797892868276309400253925932223895530714169648116569013581643192341931800785254715083294526325980247219218364118877864892068185905587410977152737936310734712276956663192182487672474651103240004173381041237906849437490609652395748868434296753449 e = 65537 c = 222502885974182429500948389840563415291534726891354573907329512556439632810921927905220486727807436668035929302442754225952786602492250448020341217733646472982286222338860566076161977786095675944552232391481278782019346283900959677167026636830252067048759720251671811058647569724495547940966885025629807079171218371644528053562232396674283745310132242492367274184667845174514466834132589971388067076980563188513333661165819462428837210575342101036356974189393390097403614434491507672459254969638032776897417674577487775755539964915035731988499983726435005007850876000232292458554577437739427313453671492956668188219600633325930981748162455965093222648173134777571527681591366164711307355510889316052064146089646772869610726671696699221157985834325663661400034831442431209123478778078255846830522226390964119818784903330200488705212765569163495571851459355520398928214206285080883954881888668509262455490889283862560453598662919522224935145694435885396500780651530829377030371611921181207362217397805303962112100190783763061909945889717878397740711340114311597934724670601992737526668932871436226135393872881664511222789565256059138002651403875484920711316522536260604255269532161594824301047729082877262812899724246757871448545439896 p,b = iroot(n,2) d = pow(e,-1,p*(p-1)) print(long_to_bytes(pow(c,d,n))) #b'crypto{squar3_r00t_i5_f4st3r_th4n_f4ct0r1ng!}' ``` ### Manyprime factor n bằng ecm.factor ```python= from Crypto.Util.number import* n=580642391898843192929563856870897799650883152718761762932292482252152591279871421569162037190419036435041797739880389529593674485555792234900969402019055601781662044515999210032698275981631376651117318677368742867687180140048715627160641771118040372573575479330830092989800730105573700557717146251860588802509310534792310748898504394966263819959963273509119791037525504422606634640173277598774814099540555569257179715908642917355365791447508751401889724095964924513196281345665480688029639999472649549163147599540142367575413885729653166517595719991872223011969856259344396899748662101941230745601719730556631637 c=320721490534624434149993723527322977960556510750628354856260732098109692581338409999983376131354918370047625150454728718467998870322344980985635149656977787964380651868131740312053755501594999166365821315043312308622388016666802478485476059625888033017198083472976011719998333985531756978678758897472845358167730221506573817798467100023754709109274265835201757369829744113233607359526441007577850111228850004361838028842815813724076511058179239339760639518034583306154826603816927757236549096339501503316601078891287408682099750164720032975016814187899399273719181407940397071512493967454225665490162619270814464 p=ecm.factor(n) e=65537 phi=1 for i in p: phi=phi*(i-1) d=pow(e,-1,phi) print(d) print(long_to_bytes(pow(c,d,n))) #b'crypto{700_m4ny_5m4ll_f4c70r5}' ``` ### Salty Source code: ```python= #!/usr/bin/env python3 from Crypto.Util.number import getPrime, inverse, bytes_to_long, long_to_bytes e = 1 d = -1 while d == -1: p = getPrime(512) q = getPrime(512) phi = (p - 1) * (q - 1) d = inverse(e, phi) n = p * q flag = b"XXXXXXXXXXXXXXXXXXXXXXX" pt = bytes_to_long(flag) ct = pow(pt, e, n) print(f"n = {n}") print(f"e = {e}") print(f"ct = {ct}") pt = pow(ct, d, n) decrypted = long_to_bytes(pt) assert decrypted == flag #n = 110581795715958566206600392161360212579669637391437097703685154237017351570464767725324182051199901920318211290404777259728923614917211291562555864753005179326101890427669819834642007924406862482343614488768256951616086287044725034412802176312273081322195866046098595306261781788276570920467840172004530873767 #e = 1 #ct = 44981230718212183604274785925793145442655465025264554046028251311164494127485 ``` giải: ta nhận thấy e=1 -> c = m\*\*1 (mod n) = m -> c = m ```python= from Crypto.Util.number import* long_to_bytes(44981230718212183604274785925793145442655465025264554046028251311164494127485) #b'crypto{saltstack_fell_for_this!}' ``` ### Modulus Inutilis Source: ```python= #!/usr/bin/env python3 from Crypto.Util.number import getPrime, inverse, bytes_to_long, long_to_bytes e = 3 d = -1 while d == -1: p = getPrime(1024) q = getPrime(1024) phi = (p - 1) * (q - 1) d = inverse(e, phi) n = p * q flag = b"XXXXXXXXXXXXXXXXXXXXXXX" pt = bytes_to_long(flag) ct = pow(pt, e, n) print(f"n = {n}") print(f"e = {e}") print(f"ct = {ct}") pt = pow(ct, d, n) decrypted = long_to_bytes(pt) assert decrypted == flag #n = 17258212916191948536348548470938004244269544560039009244721959293554822498047075403658429865201816363311805874117705688359853941515579440852166618074161313773416434156467811969628473425365608002907061241714688204565170146117869742910273064909154666642642308154422770994836108669814632309362483307560217924183202838588431342622551598499747369771295105890359290073146330677383341121242366368309126850094371525078749496850520075015636716490087482193603562501577348571256210991732071282478547626856068209192987351212490642903450263288650415552403935705444809043563866466823492258216747445926536608548665086042098252335883 #e = 3 #ct = 243251053617903760309941844835411292373350655973075480264001352919865180151222189820473358411037759381328642957324889519192337152355302808400638052620580409813222660643570085177957 ``` ta nhận thấy ct bé hơn rất nhiều so với n vậy rất có thể c=m\*\*e ```python= from Crypto.Util.number import* from gmpy2 import* c=243251053617903760309941844835411292373350655973075480264001352919865180151222189820473358411037759381328642957324889519192337152355302808400638052620580409813222660643570085177957 e=3 m,b=iroot(c,e) print(long_to_bytes(m)) #b'crypto{N33d_m04R_p4dd1ng}' ``` ### Everything is Big Source: ```python= #!/usr/bin/env python3 from Crypto.Util.number import getPrime, bytes_to_long FLAG = b"crypto{?????????????????????????}" m = bytes_to_long(FLAG) def get_huge_RSA(): p = getPrime(1024) q = getPrime(1024) N = p*q phi = (p-1)*(q-1) while True: d = getPrime(256) e = pow(d,-1,phi) if e.bit_length() == N.bit_length(): break return N,e N, e = get_huge_RSA() c = pow(m, e, N) print(f'N = {hex(N)}') print(f'e = {hex(e)}') print(f'c = {hex(c)}') #N = 0xb8af3d3afb893a602de4afe2a29d7615075d1e570f8bad8ebbe9b5b9076594cf06b6e7b30905b6420e950043380ea746f0a14dae34469aa723e946e484a58bcd92d1039105871ffd63ffe64534b7d7f8d84b4a569723f7a833e6daf5e182d658655f739a4e37bd9f4a44aff6ca0255cda5313c3048f56eed5b21dc8d88bf5a8f8379eac83d8523e484fa6ae8dbcb239e65d3777829a6903d779cd2498b255fcf275e5f49471f35992435ee7cade98c8e82a8beb5ce1749349caa16759afc4e799edb12d299374d748a9e3c82e1cc983cdf9daec0a2739dadcc0982c1e7e492139cbff18c5d44529407edfd8e75743d2f51ce2b58573fea6fbd4fe25154b9964d #e = 0x9ab58dbc8049b574c361573955f08ea69f97ecf37400f9626d8f5ac55ca087165ce5e1f459ef6fa5f158cc8e75cb400a7473e89dd38922ead221b33bc33d6d716fb0e4e127b0fc18a197daf856a7062b49fba7a86e3a138956af04f481b7a7d481994aeebc2672e500f3f6d8c581268c2cfad4845158f79c2ef28f242f4fa8f6e573b8723a752d96169c9d885ada59cdeb6dbe932de86a019a7e8fc8aeb07748cfb272bd36d94fe83351252187c2e0bc58bb7a0a0af154b63397e6c68af4314601e29b07caed301b6831cf34caa579eb42a8c8bf69898d04b495174b5d7de0f20cf2b8fc55ed35c6ad157d3e7009f16d6b61786ee40583850e67af13e9d25be3 #c = 0x3f984ff5244f1836ed69361f29905ca1ae6b3dcf249133c398d7762f5e277919174694293989144c9d25e940d2f66058b2289c75d1b8d0729f9a7c4564404a5fd4313675f85f31b47156068878e236c5635156b0fa21e24346c2041ae42423078577a1413f41375a4d49296ab17910ae214b45155c4570f95ca874ccae9fa80433a1ab453cbb28d780c2f1f4dc7071c93aff3924d76c5b4068a0371dff82531313f281a8acadaa2bd5078d3ddcefcb981f37ff9b8b14c7d9bf1accffe7857160982a2c7d9ee01d3e82265eec9c7401ecc7f02581fd0d912684f42d1b71df87a1ca51515aab4e58fab4da96e154ea6cdfb573a71d81b2ea4a080a1066e1bc3474 ``` do d<(1/3)\*n\*\*0.25, có thể tấn công bằng weiner attack https://cryptohack.gitbook.io/cryptobook/untitled/low-private-component-attacks/wieners-attack ```python= from Crypto.Util.number import long_to_bytes def wiener(e, n): # Convert e/n into a continued fraction cf = continued_fraction(e/n) convergents = cf.convergents() for kd in convergents: k = kd.numerator() d = kd.denominator() # Check if k and d meet the requirements if k == 0 or d%2 == 0 or e*d % k != 1: continue phi = (e*d - 1)/k # Create the polynomial x = PolynomialRing(RationalField(), 'x').gen() f = x^2 - (n-phi+1)*x + n roots = f.roots() # Check if polynomial as two roots if len(roots) != 2: continue # Check if roots of the polynomial are p and q p,q = int(roots[0][0]), int(roots[1][0]) if p*q == n: return d return None # Test to see if our attack works if __name__ == '__main__': n = 0xb8af3d3afb893a602de4afe2a29d7615075d1e570f8bad8ebbe9b5b9076594cf06b6e7b30905b6420e950043380ea746f0a14dae34469aa723e946e484a58bcd92d1039105871ffd63ffe64534b7d7f8d84b4a569723f7a833e6daf5e182d658655f739a4e37bd9f4a44aff6ca0255cda5313c3048f56eed5b21dc8d88bf5a8f8379eac83d8523e484fa6ae8dbcb239e65d3777829a6903d779cd2498b255fcf275e5f49471f35992435ee7cade98c8e82a8beb5ce1749349caa16759afc4e799edb12d299374d748a9e3c82e1cc983cdf9daec0a2739dadcc0982c1e7e492139cbff18c5d44529407edfd8e75743d2f51ce2b58573fea6fbd4fe25154b9964d e = 0x9ab58dbc8049b574c361573955f08ea69f97ecf37400f9626d8f5ac55ca087165ce5e1f459ef6fa5f158cc8e75cb400a7473e89dd38922ead221b33bc33d6d716fb0e4e127b0fc18a197daf856a7062b49fba7a86e3a138956af04f481b7a7d481994aeebc2672e500f3f6d8c581268c2cfad4845158f79c2ef28f242f4fa8f6e573b8723a752d96169c9d885ada59cdeb6dbe932de86a019a7e8fc8aeb07748cfb272bd36d94fe83351252187c2e0bc58bb7a0a0af154b63397e6c68af4314601e29b07caed301b6831cf34caa579eb42a8c8bf69898d04b495174b5d7de0f20cf2b8fc55ed35c6ad157d3e7009f16d6b61786ee40583850e67af13e9d25be3 c = 0x3f984ff5244f1836ed69361f29905ca1ae6b3dcf249133c398d7762f5e277919174694293989144c9d25e940d2f66058b2289c75d1b8d0729f9a7c4564404a5fd4313675f85f31b47156068878e236c5635156b0fa21e24346c2041ae42423078577a1413f41375a4d49296ab17910ae214b45155c4570f95ca874ccae9fa80433a1ab453cbb28d780c2f1f4dc7071c93aff3924d76c5b4068a0371dff82531313f281a8acadaa2bd5078d3ddcefcb981f37ff9b8b14c7d9bf1accffe7857160982a2c7d9ee01d3e82265eec9c7401ecc7f02581fd0d912684f42d1b71df87a1ca51515aab4e58fab4da96e154ea6cdfb573a71d81b2ea4a080a1066e1bc3474 d = wiener(e,n) assert not d is None, "Wiener's attack failed :(" print(long_to_bytes(int(pow(c,d,n))).decode()) #'crypto{s0m3th1ng5_c4n_b3_t00_b1g}' ``` ### Crossed Wires soure code: ```python= from Crypto.Util.number import getPrime, long_to_bytes, bytes_to_long, inverse import math from gmpy2 import next_prime FLAG = b"crypto{????????????????????????????????????????????????}" p = getPrime(1024) q = getPrime(1024) N = p*q phi = (p-1)*(q-1) e = 0x10001 d = inverse(e, phi) my_key = (N, d) friends = 5 friend_keys = [(N, getPrime(17)) for _ in range(friends)] cipher = bytes_to_long(FLAG) for key in friend_keys: cipher = pow(cipher, key[1], key[0]) print(f"My private key: {my_key}") print(f"My Friend's public keys: {friend_keys}") print(f"Encrypted flag: {cipher}") ``` ``` My private key: (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 2734411677251148030723138005716109733838866545375527602018255159319631026653190783670493107936401603981429171880504360560494771017246468702902647370954220312452541342858747590576273775107870450853533717116684326976263006435733382045807971890762018747729574021057430331778033982359184838159747331236538501849965329264774927607570410347019418407451937875684373454982306923178403161216817237890962651214718831954215200637651103907209347900857824722653217179548148145687181377220544864521808230122730967452981435355334932104265488075777638608041325256776275200067541533022527964743478554948792578057708522350812154888097) My Friend's public keys: [(21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 106979), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 108533), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 69557), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 97117), (21711308225346315542706844618441565741046498277716979943478360598053144971379956916575370343448988601905854572029635846626259487297950305231661109855854947494209135205589258643517961521594924368498672064293208230802441077390193682958095111922082677813175804775628884377724377647428385841831277059274172982280545237765559969228707506857561215268491024097063920337721783673060530181637161577401589126558556182546896783307370517275046522704047385786111489447064794210010802761708615907245523492585896286374996088089317826162798278528296206977900274431829829206103227171839270887476436899494428371323874689055690729986771, 103231)] Encrypted flag: 20304610279578186738172766224224793119885071262464464448863461184092225736054747976985179673905441502689126216282897704508745403799054734121583968853999791604281615154100736259131453424385364324630229671185343778172807262640709301838274824603101692485662726226902121105591137437331463201881264245562214012160875177167442010952439360623396658974413900469093836794752270399520074596329058725874834082188697377597949405779039139194196065364426213208345461407030771089787529200057105746584493554722790592530472869581310117300343461207750821737840042745530876391793484035024644475535353227851321505537398888106855012746117 ``` có e,d,n-> ta tìm được p, q ta thấy e=e1\*e2\*e3\*e4\*e5 ->d_all=pow(e,-1,phi) ->m script: ```python= ``` ### Everything is Still Big source code: ```python= #!/usr/bin/env python3 from Crypto.Util.number import getPrime, bytes_to_long, inverse from random import getrandbits from math import gcd FLAG = b"crypto{?????????????????????????????????????}" m = bytes_to_long(FLAG) def get_huge_RSA(): p = getPrime(1024) q = getPrime(1024) N = p*q phi = (p-1)*(q-1) while True: d = getrandbits(512) if (3*d)**4 > N and gcd(d,phi) == 1: e = inverse(d, phi) break return N,e N, e = get_huge_RSA() c = pow(m, e, N) print(f'N = {hex(N)}') print(f'e = {hex(e)}') print(f'c = {hex(c)}') #N = 0xb12746657c720a434861e9a4828b3c89a6b8d4a1bd921054e48d47124dbcc9cfcdcc39261c5e93817c167db818081613f57729e0039875c72a5ae1f0bc5ef7c933880c2ad528adbc9b1430003a491e460917b34c4590977df47772fab1ee0ab251f94065ab3004893fe1b2958008848b0124f22c4e75f60ed3889fb62e5ef4dcc247a3d6e23072641e62566cd96ee8114b227b8f498f9a578fc6f687d07acdbb523b6029c5bbeecd5efaf4c4d35304e5e6b5b95db0e89299529eb953f52ca3247d4cd03a15939e7d638b168fd00a1cb5b0cc5c2cc98175c1ad0b959c2ab2f17f917c0ccee8c3fe589b4cb441e817f75e575fc96a4fe7bfea897f57692b050d2b #e = 0x9d0637faa46281b533e83cc37e1cf5626bd33f712cc1948622f10ec26f766fb37b9cd6c7a6e4b2c03bce0dd70d5a3a28b6b0c941d8792bc6a870568790ebcd30f40277af59e0fd3141e272c48f8e33592965997c7d93006c27bf3a2b8fb71831dfa939c0ba2c7569dd1b660efc6c8966e674fbe6e051811d92a802c789d895f356ceec9722d5a7b617d21b8aa42dd6a45de721953939a5a81b8dffc9490acd4f60b0c0475883ff7e2ab50b39b2deeedaefefffc52ae2e03f72756d9b4f7b6bd85b1a6764b31312bc375a2298b78b0263d492205d2a5aa7a227abaf41ab4ea8ce0e75728a5177fe90ace36fdc5dba53317bbf90e60a6f2311bb333bf55ba3245f #c = 0xa3bce6e2e677d7855a1a7819eb1879779d1e1eefa21a1a6e205c8b46fdc020a2487fdd07dbae99274204fadda2ba69af73627bdddcb2c403118f507bca03cb0bad7a8cd03f70defc31fa904d71230aab98a10e155bf207da1b1cac1503f48cab3758024cc6e62afe99767e9e4c151b75f60d8f7989c152fdf4ff4b95ceed9a7065f38c68dee4dd0da503650d3246d463f504b36e1d6fafabb35d2390ecf0419b2bb67c4c647fb38511b34eb494d9289c872203fa70f4084d2fa2367a63a8881b74cc38730ad7584328de6a7d92e4ca18098a15119baee91237cea24975bdfc19bdbce7c1559899a88125935584cd37c8dd31f3f2b4517eefae84e7e588344fa5 ``` họ cho d>(1/3)\*n\*\*0.25 để ta không thể sử dụng wiener và phải dùng boneh-durfee tuy nhiên bằng 1 cách thần kì nào đấy thì vẫn dùng wiener được script: ```python= from Crypto.Util.number import long_to_bytes def wiener(e, n): # Convert e/n into a continued fraction cf = continued_fraction(e/n) convergents = cf.convergents() for kd in convergents: k = kd.numerator() d = kd.denominator() # Check if k and d meet the requirements if k == 0 or d%2 == 0 or e*d % k != 1: continue phi = (e*d - 1)/k # Create the polynomial x = PolynomialRing(RationalField(), 'x').gen() f = x^2 - (n-phi+1)*x + n roots = f.roots() # Check if polynomial as two roots if len(roots) != 2: continue # Check if roots of the polynomial are p and q p,q = int(roots[0][0]), int(roots[1][0]) if p*q == n: return d return None # Test to see if our attack works if __name__ == '__main__': n = 0xb12746657c720a434861e9a4828b3c89a6b8d4a1bd921054e48d47124dbcc9cfcdcc39261c5e93817c167db818081613f57729e0039875c72a5ae1f0bc5ef7c933880c2ad528adbc9b1430003a491e460917b34c4590977df47772fab1ee0ab251f94065ab3004893fe1b2958008848b0124f22c4e75f60ed3889fb62e5ef4dcc247a3d6e23072641e62566cd96ee8114b227b8f498f9a578fc6f687d07acdbb523b6029c5bbeecd5efaf4c4d35304e5e6b5b95db0e89299529eb953f52ca3247d4cd03a15939e7d638b168fd00a1cb5b0cc5c2cc98175c1ad0b959c2ab2f17f917c0ccee8c3fe589b4cb441e817f75e575fc96a4fe7bfea897f57692b050d2b e = 0x9d0637faa46281b533e83cc37e1cf5626bd33f712cc1948622f10ec26f766fb37b9cd6c7a6e4b2c03bce0dd70d5a3a28b6b0c941d8792bc6a870568790ebcd30f40277af59e0fd3141e272c48f8e33592965997c7d93006c27bf3a2b8fb71831dfa939c0ba2c7569dd1b660efc6c8966e674fbe6e051811d92a802c789d895f356ceec9722d5a7b617d21b8aa42dd6a45de721953939a5a81b8dffc9490acd4f60b0c0475883ff7e2ab50b39b2deeedaefefffc52ae2e03f72756d9b4f7b6bd85b1a6764b31312bc375a2298b78b0263d492205d2a5aa7a227abaf41ab4ea8ce0e75728a5177fe90ace36fdc5dba53317bbf90e60a6f2311bb333bf55ba3245f c = 0xa3bce6e2e677d7855a1a7819eb1879779d1e1eefa21a1a6e205c8b46fdc020a2487fdd07dbae99274204fadda2ba69af73627bdddcb2c403118f507bca03cb0bad7a8cd03f70defc31fa904d71230aab98a10e155bf207da1b1cac1503f48cab3758024cc6e62afe99767e9e4c151b75f60d8f7989c152fdf4ff4b95ceed9a7065f38c68dee4dd0da503650d3246d463f504b36e1d6fafabb35d2390ecf0419b2bb67c4c647fb38511b34eb494d9289c872203fa70f4084d2fa2367a63a8881b74cc38730ad7584328de6a7d92e4ca18098a15119baee91237cea24975bdfc19bdbce7c1559899a88125935584cd37c8dd31f3f2b4517eefae84e7e588344fa5 d = wiener(e,n) print(d) assert not d is None, "Wiener's attack failed :(" print(long_to_bytes(int(pow(c,d,n))).decode()) #crypto{bon3h5_4tt4ck_i5_sr0ng3r_th4n_w13n3r5} ``` với phương pháp boneh-durfee: ```python= from __future__ import print_function import time ############################################ # Config ########################################## """ Setting debug to true will display more informations about the lattice, the bounds, the vectors... """ debug = True """ Setting strict to true will stop the algorithm (and return (-1, -1)) if we don't have a correct upperbound on the determinant. Note that this doesn't necesseraly mean that no solutions will be found since the theoretical upperbound is usualy far away from actual results. That is why you should probably use `strict = False` """ strict = False """ This is experimental, but has provided remarkable results so far. It tries to reduce the lattice as much as it can while keeping its efficiency. I see no reason not to use this option, but if things don't work, you should try disabling it """ helpful_only = True dimension_min = 7 # stop removing if lattice reaches that dimension ############################################ # Functions ########################################## # display stats on helpful vectors def helpful_vectors(BB, modulus): nothelpful = 0 for ii in range(BB.dimensions()[0]): if BB[ii,ii] >= modulus: nothelpful += 1 print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful") # display matrix picture with 0 and X def matrix_overview(BB, bound): for ii in range(BB.dimensions()[0]): a = ('%02d ' % ii) for jj in range(BB.dimensions()[1]): a += '0' if BB[ii,jj] == 0 else 'X' if BB.dimensions()[0] < 60: a += ' ' if BB[ii, ii] >= bound: a += '~' print(a) # tries to remove unhelpful vectors # we start at current = n-1 (last vector) def remove_unhelpful(BB, monomials, bound, current): # end of our recursive function if current == -1 or BB.dimensions()[0] <= dimension_min: return BB # we start by checking from the end for ii in range(current, -1, -1): # if it is unhelpful: if BB[ii, ii] >= bound: affected_vectors = 0 affected_vector_index = 0 # let's check if it affects other vectors for jj in range(ii + 1, BB.dimensions()[0]): # if another vector is affected: # we increase the count if BB[jj, ii] != 0: affected_vectors += 1 affected_vector_index = jj # level:0 # if no other vectors end up affected # we remove it if affected_vectors == 0: print("* removing unhelpful vector", ii) BB = BB.delete_columns([ii]) BB = BB.delete_rows([ii]) monomials.pop(ii) BB = remove_unhelpful(BB, monomials, bound, ii-1) return BB # level:1 # if just one was affected we check # if it is affecting someone else elif affected_vectors == 1: affected_deeper = True for kk in range(affected_vector_index + 1, BB.dimensions()[0]): # if it is affecting even one vector # we give up on this one if BB[kk, affected_vector_index] != 0: affected_deeper = False # remove both it if no other vector was affected and # this helpful vector is not helpful enough # compared to our unhelpful one if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]): print("* removing unhelpful vectors", ii, "and", affected_vector_index) BB = BB.delete_columns([affected_vector_index, ii]) BB = BB.delete_rows([affected_vector_index, ii]) monomials.pop(affected_vector_index) monomials.pop(ii) BB = remove_unhelpful(BB, monomials, bound, ii-1) return BB # nothing happened return BB """ Returns: * 0,0 if it fails * -1,-1 if `strict=true`, and determinant doesn't bound * x0,y0 the solutions of `pol` """ def boneh_durfee(pol, modulus, mm, tt, XX, YY): """ Boneh and Durfee revisited by Herrmann and May finds a solution if: * d < N^delta * |x| < e^delta * |y| < e^0.5 whenever delta < 1 - sqrt(2)/2 ~ 0.292 """ # substitution (Herrman and May) PR.<u, x, y> = PolynomialRing(ZZ) Q = PR.quotient(x*y + 1 - u) # u = xy + 1 polZ = Q(pol).lift() UU = XX*YY + 1 # x-shifts gg = [] for kk in range(mm + 1): for ii in range(mm - kk + 1): xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kk gg.append(xshift) gg.sort() # x-shifts list of monomials monomials = [] for polynomial in gg: for monomial in polynomial.monomials(): if monomial not in monomials: monomials.append(monomial) monomials.sort() # y-shifts (selected by Herrman and May) for jj in range(1, tt + 1): for kk in range(floor(mm/tt) * jj, mm + 1): yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk) yshift = Q(yshift).lift() gg.append(yshift) # substitution # y-shifts list of monomials for jj in range(1, tt + 1): for kk in range(floor(mm/tt) * jj, mm + 1): monomials.append(u^kk * y^jj) # construct lattice B nn = len(monomials) BB = Matrix(ZZ, nn) for ii in range(nn): BB[ii, 0] = gg[ii](0, 0, 0) for jj in range(1, ii + 1): if monomials[jj] in gg[ii].monomials(): BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY) # Prototype to reduce the lattice if helpful_only: # automatically remove BB = remove_unhelpful(BB, monomials, modulus^mm, nn-1) # reset dimension nn = BB.dimensions()[0] if nn == 0: print("failure") return 0,0 # check if vectors are helpful if debug: helpful_vectors(BB, modulus^mm) # check if determinant is correctly bounded det = BB.det() bound = modulus^(mm*nn) if det >= bound: print("We do not have det < bound. Solutions might not be found.") print("Try with highers m and t.") if debug: diff = (log(det) - log(bound)) / log(2) print("size det(L) - size e^(m*n) = ", floor(diff)) if strict: return -1, -1 else: print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)") # display the lattice basis if debug: matrix_overview(BB, modulus^mm) # LLL if debug: print("optimizing basis of the lattice via LLL, this can take a long time") BB = BB.LLL() if debug: print("LLL is done!") # transform vector i & j -> polynomials 1 & 2 if debug: print("looking for independent vectors in the lattice") found_polynomials = False for pol1_idx in range(nn - 1): for pol2_idx in range(pol1_idx + 1, nn): # for i and j, create the two polynomials PR.<w,z> = PolynomialRing(ZZ) pol1 = pol2 = 0 for jj in range(nn): pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY) pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY) # resultant PR.<q> = PolynomialRing(ZZ) rr = pol1.resultant(pol2) # are these good polynomials? if rr.is_zero() or rr.monomials() == [1]: continue else: print("found them, using vectors", pol1_idx, "and", pol2_idx) found_polynomials = True break if found_polynomials: break if not found_polynomials: print("no independant vectors could be found. This should very rarely happen...") return 0, 0 rr = rr(q, q) # solutions soly = rr.roots() if len(soly) == 0: print("Your prediction (delta) is too small") return 0, 0 soly = soly[0][0] ss = pol1(q, soly) solx = ss.roots()[0][0] # return solx, soly def example(): ############################################ # How To Use This Script ########################################## # # The problem to solve (edit the following values) # # the modulus N = 0xb12746657c720a434861e9a4828b3c89a6b8d4a1bd921054e48d47124dbcc9cfcdcc39261c5e93817c167db818081613f57729e0039875c72a5ae1f0bc5ef7c933880c2ad528adbc9b1430003a491e460917b34c4590977df47772fab1ee0ab251f94065ab3004893fe1b2958008848b0124f22c4e75f60ed3889fb62e5ef4dcc247a3d6e23072641e62566cd96ee8114b227b8f498f9a578fc6f687d07acdbb523b6029c5bbeecd5efaf4c4d35304e5e6b5b95db0e89299529eb953f52ca3247d4cd03a15939e7d638b168fd00a1cb5b0cc5c2cc98175c1ad0b959c2ab2f17f917c0ccee8c3fe589b4cb441e817f75e575fc96a4fe7bfea897f57692b050d2b e = 0x9d0637faa46281b533e83cc37e1cf5626bd33f712cc1948622f10ec26f766fb37b9cd6c7a6e4b2c03bce0dd70d5a3a28b6b0c941d8792bc6a870568790ebcd30f40277af59e0fd3141e272c48f8e33592965997c7d93006c27bf3a2b8fb71831dfa939c0ba2c7569dd1b660efc6c8966e674fbe6e051811d92a802c789d895f356ceec9722d5a7b617d21b8aa42dd6a45de721953939a5a81b8dffc9490acd4f60b0c0475883ff7e2ab50b39b2deeedaefefffc52ae2e03f72756d9b4f7b6bd85b1a6764b31312bc375a2298b78b0263d492205d2a5aa7a227abaf41ab4ea8ce0e75728a5177fe90ace36fdc5dba53317bbf90e60a6f2311bb333bf55ba3245f # the hypothesis on the private exponent (the theoretical maximum is 0.292) delta = .18 # this means that d < N^delta # # Lattice (tweak those values) # # you should tweak this (after a first run), (e.g. increment it until a solution is found) m = 4 # size of the lattice (bigger the better/slower) # you need to be a lattice master to tweak these t = int((1-2*delta) * m) # optimization from Herrmann and May X = 2*floor(N^delta) # this _might_ be too much Y = floor(N^(1/2)) # correct if p, q are ~ same size # # Don't touch anything below # # Problem put in equation P.<x,y> = PolynomialRing(ZZ) A = int((N+1)/2) pol = 1 + x * (A + y) # # Find the solutions! # # Checking bounds if debug: print("=== checking values ===") print("* delta:", delta) print("* delta < 0.292", delta < 0.292) print("* size of e:", int(log(e)/log(2))) print("* size of N:", int(log(N)/log(2))) print("* m:", m, ", t:", t) # boneh_durfee if debug: print("=== running algorithm ===") start_time = time.time() solx, soly = boneh_durfee(pol, e, m, t, X, Y) # found a solution? if solx > 0: print("=== solution found ===") if False: print("x:", solx) print("y:", soly) d = int(pol(solx, soly) / e) print("private key found:", d) else: print("=== no solution was found ===") if debug: print(("=== %s seconds ===" % (time.time() - start_time))) if __name__ == "__main__": example() ``` ``` === checking values === * delta: 0.180000000000000 * delta < 0.292 True * size of e: 2047 * size of N: 2047 * m: 4 , t: 2 === running algorithm === * removing unhelpful vector 0 6 / 18 vectors are not helpful det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found) 00 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 01 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 03 0 0 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 04 0 0 X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 05 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 ~ 06 0 0 0 0 0 X X 0 0 0 0 0 0 0 0 0 0 0 ~ 07 0 0 0 0 0 X X X 0 0 0 0 0 0 0 0 0 0 08 0 0 0 0 0 X X X X 0 0 0 0 0 0 0 0 0 09 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 ~ 10 0 0 0 0 0 0 0 0 0 X X 0 0 0 0 0 0 0 ~ 11 0 0 0 0 0 0 0 0 0 X X X 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 X X X X 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 X X X X X 0 0 0 0 14 X X 0 X X 0 0 0 0 0 0 0 0 0 X 0 0 0 15 0 0 X X X 0 X X X 0 0 0 0 0 0 X 0 0 16 0 0 0 0 0 X X X X 0 X X X X 0 0 X 0 17 0 0 X X X 0 X X X 0 0 X X X 0 X X X optimizing basis of the lattice via LLL, this can take a long time LLL is done! looking for independent vectors in the lattice found them, using vectors 0 and 1 === solution found === private key found: 4405001203086303853525638270840706181413309101774712363141310824943602913458674670435988275467396881342752245170076677567586495166847569659096584522419007 === 0.6911914348602295 seconds === ``` ### Endless Emails source code: ```python= #!/usr/bin/env python3 from Crypto.Util.number import bytes_to_long, getPrime from secret import messages def RSA_encrypt(message): m = bytes_to_long(message) p = getPrime(1024) q = getPrime(1024) N = p * q e = 3 c = pow(m, e, N) return N, e, c for m in messages: N, e, c = RSA_encrypt(m) print(f"n = {N}") print(f"e = {e}") print(f"c = {c}") ``` ``` n = 14528915758150659907677315938876872514853653132820394367681510019000469589767908107293777996420037715293478868775354645306536953789897501630398061779084810058931494642860729799059325051840331449914529594113593835549493208246333437945551639983056810855435396444978249093419290651847764073607607794045076386643023306458718171574989185213684263628336385268818202054811378810216623440644076846464902798568705083282619513191855087399010760232112434412274701034094429954231366422968991322244343038458681255035356984900384509158858007713047428143658924970374944616430311056440919114824023838380098825914755712289724493770021 e = 3 c = 6965891612987861726975066977377253961837139691220763821370036576350605576485706330714192837336331493653283305241193883593410988132245791554283874785871849223291134571366093850082919285063130119121338290718389659761443563666214229749009468327825320914097376664888912663806925746474243439550004354390822079954583102082178617110721589392875875474288168921403550415531707419931040583019529612270482482718035497554779733578411057633524971870399893851589345476307695799567919550426417015815455141863703835142223300228230547255523815097431420381177861163863791690147876158039619438793849367921927840731088518955045807722225 n = 20463913454649855046677206889944639231694511458416906994298079596685813354570085475890888433776403011296145408951323816323011550738170573801417972453504044678801608709931200059967157605416809387753258251914788761202456830940944486915292626560515250805017229876565916349963923702612584484875113691057716315466239062005206014542088484387389725058070917118549621598629964819596412564094627030747720659155558690124005400257685883230881015636066183743516494701900125788836869358634031031172536767950943858472257519195392986989232477630794600444813136409000056443035171453870906346401936687214432176829528484662373633624123 e = 3 c = 5109363605089618816120178319361171115590171352048506021650539639521356666986308721062843132905170261025772850941702085683855336653472949146012700116070022531926476625467538166881085235022484711752960666438445574269179358850309578627747024264968893862296953506803423930414569834210215223172069261612934281834174103316403670168299182121939323001232617718327977313659290755318972603958579000300780685344728301503641583806648227416781898538367971983562236770576174308965929275267929379934367736694110684569576575266348020800723535121638175505282145714117112442582416208209171027273743686645470434557028336357172288865172 n = 19402640770593345339726386104915705450969517850985511418263141255686982818547710008822417349818201858549321868878490314025136645036980129976820137486252202687238348587398336652955435182090722844668488842986318211649569593089444781595159045372322540131250208258093613844753021272389255069398553523848975530563989367082896404719544411946864594527708058887475595056033713361893808330341623804367785721774271084389159493974946320359512776328984487126583015777989991635428744050868653379191842998345721260216953918203248167079072442948732000084754225272238189439501737066178901505257566388862947536332343196537495085729147 e = 3 c = 5603386396458228314230975500760833991383866638504216400766044200173576179323437058101562931430558738148852367292802918725271632845889728711316688681080762762324367273332764959495900563756768440309595248691744845766607436966468714038018108912467618638117493367675937079141350328486149333053000366933205635396038539236203203489974033629281145427277222568989469994178084357460160310598260365030056631222346691527861696116334946201074529417984624304973747653407317290664224507485684421999527164122395674469650155851869651072847303136621932989550786722041915603539800197077294166881952724017065404825258494318993054344153 n = 12005639978012754274325188681720834222130605634919280945697102906256738419912110187245315232437501890545637047506165123606573171374281507075652554737014979927883759915891863646221205835211640845714836927373844277878562666545230876640830141637371729405545509920889968046268135809999117856968692236742804637929866632908329522087977077849045608566911654234541526643235586433065170392920102840518192803854740398478305598092197183671292154743153130012885747243219372709669879863098708318993844005566984491622761795349455404952285937152423145150066181043576492305166964448141091092142224906843816547235826717179687198833961 e = 3 c = 1522280741383024774933280198410525846833410931417064479278161088248621390305797210285777845359812715909342595804742710152832168365433905718629465545306028275498667935929180318276445229415104842407145880223983428713335709038026249381363564625791656631137936935477777236936508600353416079028339774876425198789629900265348122040413865209592074731028757972968635601695468594123523892918747882221891834598896483393711851510479989203644477972694520237262271530260496342247355761992646827057846109181410462131875377404309983072358313960427035348425800940661373272947647516867525052504539561289941374722179778872627956360577 n = 17795451956221451086587651307408104001363221003775928432650752466563818944480119932209305765249625841644339021308118433529490162294175590972336954199870002456682453215153111182451526643055812311071588382409549045943806869173323058059908678022558101041630272658592291327387549001621625757585079662873501990182250368909302040015518454068699267914137675644695523752851229148887052774845777699287718342916530122031495267122700912518207571821367123013164125109174399486158717604851125244356586369921144640969262427220828940652994276084225196272504355264547588369516271460361233556643313911651916709471353368924621122725823 e = 3 c = 8752507806125480063647081749506966428026005464325535765874589376572431101816084498482064083887400646438977437273700004934257274516197148448425455243811009944321764771392044345410680448204581679548854193081394891841223548418812679441816502910830861271884276608891963388657558218620911858230760629700918375750796354647493524576614017731938584618983084762612414591830024113057983483156974095503392359946722756364412399187910604029583464521617256125933111786441852765229820406911991809039519015434793656710199153380699319611499255869045311421603167606551250174746275803467549814529124250122560661739949229005127507540805 n = 25252721057733555082592677470459355315816761410478159901637469821096129654501579313856822193168570733800370301193041607236223065376987811309968760580864569059669890823406084313841678888031103461972888346942160731039637326224716901940943571445217827960353637825523862324133203094843228068077462983941899571736153227764822122334838436875488289162659100652956252427378476004164698656662333892963348126931771536472674447932268282205545229907715893139346941832367885319597198474180888087658441880346681594927881517150425610145518942545293750127300041942766820911120196262215703079164895767115681864075574707999253396530263 e = 3 c = 23399624135645767243362438536844425089018405258626828336566973656156553220156563508607371562416462491581383453279478716239823054532476006642583363934314982675152824147243749715830794488268846671670287617324522740126594148159945137948643597981681529145611463534109482209520448640622103718682323158039797577387254265854218727476928164074249568031493984825273382959147078839665114417896463735635546290504843957780546550577300001452747760982468547756427137284830133305010038339400230477403836856663883956463830571934657200851598986174177386323915542033293658596818231793744261192870485152396793393026198817787033127061749 n = 19833203629283018227011925157509157967003736370320129764863076831617271290326613531892600790037451229326924414757856123643351635022817441101879725227161178559229328259469472961665857650693413215087493448372860837806619850188734619829580286541292997729705909899738951228555834773273676515143550091710004139734080727392121405772911510746025807070635102249154615454505080376920778703360178295901552323611120184737429513669167641846902598281621408629883487079110172218735807477275590367110861255756289520114719860000347219161944020067099398239199863252349401303744451903546571864062825485984573414652422054433066179558897 e = 3 c = 15239683995712538665992887055453717247160229941400011601942125542239446512492703769284448009141905335544729440961349343533346436084176947090230267995060908954209742736573986319254695570265339469489948102562072983996668361864286444602534666284339466797477805372109723178841788198177337648499899079471221924276590042183382182326518312979109378616306364363630519677884849945606288881683625944365927809405420540525867173639222696027472336981838588256771671910217553150588878434061862840893045763456457939944572192848992333115479951110622066173007227047527992906364658618631373790704267650950755276227747600169403361509144 ``` dễ dàng nhận thấy đây là dạng hastad broadcast attack script(chôm của người khác): ```python= from Crypto.Util.number import long_to_bytes from itertools import combinations from gmpy2 import iroot cs = [6965891612987861726975066977377253961837139691220763821370036576350605576485706330714192837336331493653283305241193883593410988132245791554283874785871849223291134571366093850082919285063130119121338290718389659761443563666214229749009468327825320914097376664888912663806925746474243439550004354390822079954583102082178617110721589392875875474288168921403550415531707419931040583019529612270482482718035497554779733578411057633524971870399893851589345476307695799567919550426417015815455141863703835142223300228230547255523815097431420381177861163863791690147876158039619438793849367921927840731088518955045807722225, 5109363605089618816120178319361171115590171352048506021650539639521356666986308721062843132905170261025772850941702085683855336653472949146012700116070022531926476625467538166881085235022484711752960666438445574269179358850309578627747024264968893862296953506803423930414569834210215223172069261612934281834174103316403670168299182121939323001232617718327977313659290755318972603958579000300780685344728301503641583806648227416781898538367971983562236770576174308965929275267929379934367736694110684569576575266348020800723535121638175505282145714117112442582416208209171027273743686645470434557028336357172288865172, 5603386396458228314230975500760833991383866638504216400766044200173576179323437058101562931430558738148852367292802918725271632845889728711316688681080762762324367273332764959495900563756768440309595248691744845766607436966468714038018108912467618638117493367675937079141350328486149333053000366933205635396038539236203203489974033629281145427277222568989469994178084357460160310598260365030056631222346691527861696116334946201074529417984624304973747653407317290664224507485684421999527164122395674469650155851869651072847303136621932989550786722041915603539800197077294166881952724017065404825258494318993054344153, 1522280741383024774933280198410525846833410931417064479278161088248621390305797210285777845359812715909342595804742710152832168365433905718629465545306028275498667935929180318276445229415104842407145880223983428713335709038026249381363564625791656631137936935477777236936508600353416079028339774876425198789629900265348122040413865209592074731028757972968635601695468594123523892918747882221891834598896483393711851510479989203644477972694520237262271530260496342247355761992646827057846109181410462131875377404309983072358313960427035348425800940661373272947647516867525052504539561289941374722179778872627956360577, 8752507806125480063647081749506966428026005464325535765874589376572431101816084498482064083887400646438977437273700004934257274516197148448425455243811009944321764771392044345410680448204581679548854193081394891841223548418812679441816502910830861271884276608891963388657558218620911858230760629700918375750796354647493524576614017731938584618983084762612414591830024113057983483156974095503392359946722756364412399187910604029583464521617256125933111786441852765229820406911991809039519015434793656710199153380699319611499255869045311421603167606551250174746275803467549814529124250122560661739949229005127507540805, 23399624135645767243362438536844425089018405258626828336566973656156553220156563508607371562416462491581383453279478716239823054532476006642583363934314982675152824147243749715830794488268846671670287617324522740126594148159945137948643597981681529145611463534109482209520448640622103718682323158039797577387254265854218727476928164074249568031493984825273382959147078839665114417896463735635546290504843957780546550577300001452747760982468547756427137284830133305010038339400230477403836856663883956463830571934657200851598986174177386323915542033293658596818231793744261192870485152396793393026198817787033127061749, 15239683995712538665992887055453717247160229941400011601942125542239446512492703769284448009141905335544729440961349343533346436084176947090230267995060908954209742736573986319254695570265339469489948102562072983996668361864286444602534666284339466797477805372109723178841788198177337648499899079471221924276590042183382182326518312979109378616306364363630519677884849945606288881683625944365927809405420540525867173639222696027472336981838588256771671910217553150588878434061862840893045763456457939944572192848992333115479951110622066173007227047527992906364658618631373790704267650950755276227747600169403361509144] ns = [14528915758150659907677315938876872514853653132820394367681510019000469589767908107293777996420037715293478868775354645306536953789897501630398061779084810058931494642860729799059325051840331449914529594113593835549493208246333437945551639983056810855435396444978249093419290651847764073607607794045076386643023306458718171574989185213684263628336385268818202054811378810216623440644076846464902798568705083282619513191855087399010760232112434412274701034094429954231366422968991322244343038458681255035356984900384509158858007713047428143658924970374944616430311056440919114824023838380098825914755712289724493770021, 20463913454649855046677206889944639231694511458416906994298079596685813354570085475890888433776403011296145408951323816323011550738170573801417972453504044678801608709931200059967157605416809387753258251914788761202456830940944486915292626560515250805017229876565916349963923702612584484875113691057716315466239062005206014542088484387389725058070917118549621598629964819596412564094627030747720659155558690124005400257685883230881015636066183743516494701900125788836869358634031031172536767950943858472257519195392986989232477630794600444813136409000056443035171453870906346401936687214432176829528484662373633624123, 19402640770593345339726386104915705450969517850985511418263141255686982818547710008822417349818201858549321868878490314025136645036980129976820137486252202687238348587398336652955435182090722844668488842986318211649569593089444781595159045372322540131250208258093613844753021272389255069398553523848975530563989367082896404719544411946864594527708058887475595056033713361893808330341623804367785721774271084389159493974946320359512776328984487126583015777989991635428744050868653379191842998345721260216953918203248167079072442948732000084754225272238189439501737066178901505257566388862947536332343196537495085729147, 12005639978012754274325188681720834222130605634919280945697102906256738419912110187245315232437501890545637047506165123606573171374281507075652554737014979927883759915891863646221205835211640845714836927373844277878562666545230876640830141637371729405545509920889968046268135809999117856968692236742804637929866632908329522087977077849045608566911654234541526643235586433065170392920102840518192803854740398478305598092197183671292154743153130012885747243219372709669879863098708318993844005566984491622761795349455404952285937152423145150066181043576492305166964448141091092142224906843816547235826717179687198833961, 17795451956221451086587651307408104001363221003775928432650752466563818944480119932209305765249625841644339021308118433529490162294175590972336954199870002456682453215153111182451526643055812311071588382409549045943806869173323058059908678022558101041630272658592291327387549001621625757585079662873501990182250368909302040015518454068699267914137675644695523752851229148887052774845777699287718342916530122031495267122700912518207571821367123013164125109174399486158717604851125244356586369921144640969262427220828940652994276084225196272504355264547588369516271460361233556643313911651916709471353368924621122725823, 25252721057733555082592677470459355315816761410478159901637469821096129654501579313856822193168570733800370301193041607236223065376987811309968760580864569059669890823406084313841678888031103461972888346942160731039637326224716901940943571445217827960353637825523862324133203094843228068077462983941899571736153227764822122334838436875488289162659100652956252427378476004164698656662333892963348126931771536472674447932268282205545229907715893139346941832367885319597198474180888087658441880346681594927881517150425610145518942545293750127300041942766820911120196262215703079164895767115681864075574707999253396530263, 19833203629283018227011925157509157967003736370320129764863076831617271290326613531892600790037451229326924414757856123643351635022817441101879725227161178559229328259469472961665857650693413215087493448372860837806619850188734619829580286541292997729705909899738951228555834773273676515143550091710004139734080727392121405772911510746025807070635102249154615454505080376920778703360178295901552323611120184737429513669167641846902598281621408629883487079110172218735807477275590367110861255756289520114719860000347219161944020067099398239199863252349401303744451903546571864062825485984573414652422054433066179558897] e = 3 pairs = [(c, n) for c, n in zip(cs, ns)] triples = list(combinations(pairs, e)) for i in triples: c = [x[0] for x in i] n = [x[1] for x in i] l = crt(c, n) l = int(iroot(l, e)[0]) flag = long_to_bytes(l) if(b'crypto' in flag): print(flag.decode()) break ''' yes --- Johan Hastad Professor in Computer Science in the Theoretical Computer Science Group at the School of Computer Science and Communication at KTH Royal Institute of Technology in Stockholm, Sweden. crypto{1f_y0u_d0nt_p4d_y0u_4r3_Vuln3rabl3} ''' ``` ### Infinite Descent source: ```python= #!/usr/bin/env python3 import random from Crypto.Util.number import bytes_to_long, isPrime FLAG = b"crypto{???????????????????}" def getPrimes(bitsize): r = random.getrandbits(bitsize) p, q = r, r while not isPrime(p): p += random.getrandbits(bitsize//4) while not isPrime(q): q += random.getrandbits(bitsize//8) return p, q m = bytes_to_long(FLAG) p, q = getPrimes(2048) n = p * q e = 0x10001 c = pow(m, e, n) print(f"n = {n}") print(f"e = {e}") print(f"c = {c}") #n = 383347712330877040452238619329524841763392526146840572232926924642094891453979246383798913394114305368360426867021623649667024217266529000859703542590316063318592391925062014229671423777796679798747131250552455356061834719512365575593221216339005132464338847195248627639623487124025890693416305788160905762011825079336880567461033322240015771102929696350161937950387427696385850443727777996483584464610046380722736790790188061964311222153985614287276995741553706506834906746892708903948496564047090014307484054609862129530262108669567834726352078060081889712109412073731026030466300060341737504223822014714056413752165841749368159510588178604096191956750941078391415634472219765129561622344109769892244712668402761549412177892054051266761597330660545704317210567759828757156904778495608968785747998059857467440128156068391746919684258227682866083662345263659558066864109212457286114506228470930775092735385388316268663664139056183180238043386636254075940621543717531670995823417070666005930452836389812129462051771646048498397195157405386923446893886593048680984896989809135802276892911038588008701926729269812453226891776546037663583893625479252643042517196958990266376741676514631089466493864064316127648074609662749196545969926051 #e = 65537 #c = 98280456757136766244944891987028935843441533415613592591358482906016439563076150526116369842213103333480506705993633901994107281890187248495507270868621384652207697607019899166492132408348789252555196428608661320671877412710489782358282011364127799563335562917707783563681920786994453004763755404510541574502176243896756839917991848428091594919111448023948527766368304503100650379914153058191140072528095898576018893829830104362124927140555107994114143042266758709328068902664037870075742542194318059191313468675939426810988239079424823495317464035252325521917592045198152643533223015952702649249494753395100973534541766285551891859649320371178562200252228779395393974169736998523394598517174182142007480526603025578004665936854657294541338697513521007818552254811797566860763442604365744596444735991732790926343720102293453429936734206246109968817158815749927063561835274636195149702317415680401987150336994583752062565237605953153790371155918439941193401473271753038180560129784192800351649724465553733201451581525173536731674524145027931923204961274369826379325051601238308635192540223484055096203293400419816024111797903442864181965959247745006822690967920957905188441550106930799896292835287867403979631824085790047851383294389 ``` ta nhận thấy p,q gần nhau nên sử dụng fermat factor script: ```python= from Crypto.Util.number* from gmpy2 import* n = 383347712330877040452238619329524841763392526146840572232926924642094891453979246383798913394114305368360426867021623649667024217266529000859703542590316063318592391925062014229671423777796679798747131250552455356061834719512365575593221216339005132464338847195248627639623487124025890693416305788160905762011825079336880567461033322240015771102929696350161937950387427696385850443727777996483584464610046380722736790790188061964311222153985614287276995741553706506834906746892708903948496564047090014307484054609862129530262108669567834726352078060081889712109412073731026030466300060341737504223822014714056413752165841749368159510588178604096191956750941078391415634472219765129561622344109769892244712668402761549412177892054051266761597330660545704317210567759828757156904778495608968785747998059857467440128156068391746919684258227682866083662345263659558066864109212457286114506228470930775092735385388316268663664139056183180238043386636254075940621543717531670995823417070666005930452836389812129462051771646048498397195157405386923446893886593048680984896989809135802276892911038588008701926729269812453226891776546037663583893625479252643042517196958990266376741676514631089466493864064316127648074609662749196545969926051 e = 65537 c = 98280456757136766244944891987028935843441533415613592591358482906016439563076150526116369842213103333480506705993633901994107281890187248495507270868621384652207697607019899166492132408348789252555196428608661320671877412710489782358282011364127799563335562917707783563681920786994453004763755404510541574502176243896756839917991848428091594919111448023948527766368304503100650379914153058191140072528095898576018893829830104362124927140555107994114143042266758709328068902664037870075742542194318059191313468675939426810988239079424823495317464035252325521917592045198152643533223015952702649249494753395100973534541766285551891859649320371178562200252228779395393974169736998523394598517174182142007480526603025578004665936854657294541338697513521007818552254811797566860763442604365744596444735991732790926343720102293453429936734206246109968817158815749927063561835274636195149702317415680401987150336994583752062565237605953153790371155918439941193401473271753038180560129784192800351649724465553733201451581525173536731674524145027931923204961274369826379325051601238308635192540223484055096203293400419816024111797903442864181965959247745006822690967920957905188441550106930799896292835287867403979631824085790047851383294389 def fermat(n): a = iroot(n,2)[0] b = a*a - n while b<0 or iroot(b,2)[1]==False: a += 1 b = a*a - n p = int(a - iroot(b,2)[0]) q = int(a + iroot(b,2)[0]) return p, q p, q = fermat(n) #print(p,q) d = pow(e,-1,(p-1)*(q-1)) flag = pow(c, d, n) #print(flag) print(long_to_bytes(flag)) #crypto{f3rm47_w45_4_g3n1u5} ``` ### Marin's Secrets Source: ```python= #!/usr/bin/env python3 import random from Crypto.Util.number import bytes_to_long from secret import secrets, flag def get_prime(secret): prime = 1 for _ in range(secret): prime = prime << 1 return prime - 1 random.shuffle(secrets) m = bytes_to_long(flag) p = get_prime(secrets[0]) q = get_prime(secrets[1]) n = p * q e = 0x10001 c = pow(m, e, n) print(f"n = {n}") print(f"e = {e}") print(f"c = {c}") ``` ta để ý hàm tạo khóa ```get_prime(secret)``` tính khóa p, q bằng 2<sup>s</sup>-1 với s là ```secret``` ![image](https://hackmd.io/_uploads/rJle3Yhke1x.png) nhận thấy s chỉ nằm trong khoảng (1, 1023) nên ta có thể dễ dàng vét cạn s để tìm p, q trong thời gian ngắn script: ```python= from Crypto.Util.number import* n= 658416274830184544125027519921443515789888264156074733099244040126213682497714032798116399288176502462829255784525977722903018714434309698108208388664768262754316426220651576623731617882923164117579624827261244506084274371250277849351631679441171018418018498039996472549893150577189302871520311715179730714312181456245097848491669795997289830612988058523968384808822828370900198489249243399165125219244753790779764466236965135793576516193213175061401667388622228362042717054014679032953441034021506856017081062617572351195418505899388715709795992029559042119783423597324707100694064675909238717573058764118893225111602703838080618565401139902143069901117174204252871948846864436771808616432457102844534843857198735242005309073939051433790946726672234643259349535186268571629077937597838801337973092285608744209951533199868228040004432132597073390363357892379997655878857696334892216345070227646749851381208554044940444182864026513709449823489593439017366358869648168238735087593808344484365136284219725233811605331815007424582890821887260682886632543613109252862114326372077785369292570900594814481097443781269562647303671428895764224084402259605109600363098950091998891375812839523613295667253813978434879172781217285652895469194181218343078754501694746598738215243769747956572555989594598180639098344891175879455994652382137038240166358066403475457 e= 65537 c= 400280463088930432319280359115194977582517363610532464295210669530407870753439127455401384569705425621445943992963380983084917385428631223046908837804126399345875252917090184158440305503817193246288672986488987883177380307377025079266030262650932575205141853413302558460364242355531272967481409414783634558791175827816540767545944534238189079030192843288596934979693517964655661507346729751987928147021620165009965051933278913952899114253301044747587310830419190623282578931589587504555005361571572561916866063458812965314474160499067525067495140150092119620928363007467390920130717521169105167963364154636472055084012592138570354390246779276003156184676298710746583104700516466091034510765027167956117869051938116457370384737440965109619578227422049806566060571831017610877072484262724789571076529586427405780121096546942812322324807145137017942266863534989082115189065560011841150908380937354301243153206428896320576609904361937035263985348984794208198892615898907005955403529470847124269512316191753950203794578656029324506688293446571598506042198219080325747328636232040936761788558421528960279832802127562115852304946867628316502959562274485483867481731149338209009753229463924855930103271197831370982488703456463385914801246828662212622006947380115549529820197355738525329885232170215757585685484402344437894981555179129287164971002033759724456 sec=len(bin(n))-2 p=1 for s in range(2,sec): p=2**s-1 if n%p==0: q=n//p break d=pow(e,-1,(p-1)*(q-1)) print(long_to_bytes(pow(c,d,n))) #b'crypto{Th3se_Pr1m3s_4r3_t00_r4r3}' ``` ### Fast Primes Source: ```python= #!/usr/bin/env python3 import math import random from Crypto.Cipher import PKCS1_OAEP from Crypto.PublicKey import RSA from Crypto.Util.number import bytes_to_long, inverse from gmpy2 import is_prime FLAG = b"crypto{????????????}" primes = [] def sieve(maximum=10000): # In general Sieve of Sundaram, produces primes smaller # than (2*x + 2) for a number given number x. Since # we want primes smaller than maximum, we reduce maximum to half # This array is used to separate numbers of the form # i+j+2ij from others where 1 <= i <= j marked = [False]*(int(maximum/2)+1) # Main logic of Sundaram. Mark all numbers which # do not generate prime number by doing 2*i+1 for i in range(1, int((math.sqrt(maximum)-1)/2)+1): for j in range(((i*(i+1)) << 1), (int(maximum/2)+1), (2*i+1)): marked[j] = True # Since 2 is a prime number primes.append(2) # Print other primes. Remaining primes are of the # form 2*i + 1 such that marked[i] is false. for i in range(1, int(maximum/2)): if (marked[i] == False): primes.append(2*i + 1) def get_primorial(n): result = 1 for i in range(n): result = result * primes[i] return result def get_fast_prime(): M = get_primorial(40) while True: k = random.randint(2**28, 2**29-1) a = random.randint(2**20, 2**62-1) p = k * M + pow(e, a, M) if is_prime(p): return p sieve() e = 0x10001 m = bytes_to_long(FLAG) p = get_fast_prime() q = get_fast_prime() n = p * q phi = (p - 1) * (q - 1) d = inverse(e, phi) key = RSA.construct((n, e, d)) cipher = PKCS1_OAEP.new(key) ciphertext = cipher.encrypt(FLAG) assert cipher.decrypt(ciphertext) == FLAG exported = key.publickey().export_key() with open("key.pem", 'wb') as f: f.write(exported) with open('ciphertext.txt', 'w') as f: f.write(ciphertext.hex()) #249d72cd1d287b1a15a3881f2bff5788bc4bf62c789f2df44d88aae805b54c9a94b8944c0ba798f70062b66160fee312b98879f1dd5d17b33095feb3c5830d28 ``` Pem file: ``` -----BEGIN PUBLIC KEY----- MFswDQYJKoZIhvcNAQEBBQADSgAwRwJATKIe3jfj1qY7zuX5Eg0JifAUOq6RUwLz Ruiru4QKcvtW0Uh1KMp1GVt4MmKDiQksTok/pKbJsBFCZugFsS3AjQIDAQAB -----END PUBLIC KEY----- ``` --END--