--- GA: UA-159972578-2 --- ###### tags: `計量經濟` `Econometrics` `Saptial Model` `空間模型` # Saptial Model ## 讀取資料 ```{r} # Read in the SHP file (Map + Data in one) using rgdal library(rgdal) spat.data = readOGR(dsn = ".", layer = "NCVACO") options(scipen=7) # 將科學記號設在第幾位開始 ``` ## 使用相鄰矩陣(Adjacency Matrix)當作權重 `nb2listw`可以計算相鄰矩陣並存成list,matrix的row裡面都是一個county的index,所以可以知道相鄰的index是誰。 ```{r} # make weights matrix (nb type) library(spdep) queen.nb = poly2nb(spat.data) rook.nb = poly2nb(spat.data,queen=FALSE) queen.listw = nb2listw(queen.nb) # convert nb to listw type rook.listw = nb2listw(rook.nb) # convert nb to listw type ``` ## Statistic Test ### Moran Test on Residual 檢驗OLS可不可以用 + Ho: Spatial Correlation Doesn't Exists + Ha: Spatial Correlation Exists ```{r} lm.morantest(ols, weights=rook.listw) ``` ``` Global Moran I for regression residuals data: model: lm(formula = reg.eq1, data = spat.data) weights: listw1 Moran I statistic standard deviate = 5, p-value = 0.000002 alternative hypothesis: greater sample estimates: Observed Moran I Expectation Variance 0.19728 -0.01057 0.00205 ``` 結果:p=0.000002196(拒絕假設,因此不能用OLS) => Spatial Correlation Exists ### Lagrange Multiplier Test on the 1st Gradiant of Likelihood 與OSL相比,所有放進來的模型誰比較穩健,p值愈小愈好 ```{r} ols = lm(formula, data=spat.data) lm.LMtests(ols, weights=rook.listw, test="all") ``` ### Hausman Test + Spatial Hausman Test + 顯著:兩個都不能用 + 不顯著:可以用較OLS複雜的 + Panel Data Hausman Test + 顯著:用Fixed Effect + 不顯著:用Random Effect ```{r} Hausman.test(reg4) ``` ## 模型介紹 ### (SAR) ### Spatially Lagged X (SLX) y=Xß+WXT+e ### (SDM) ### (SEM)
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up