# 台大二階筆試-數學考古2014 ## 2014台大電機 ### 1. #### 16隊比賽,單淘汰制,A隊碰B隊勝率三成、碰其他勝率八成,其他隊各自比賽均五成勝率,已知A與B在冠軍戰前不會相遇,求A擊敗B得冠軍機率? #### ans: #### $(\frac{4}{5})^3(\frac{1}{2})^3(\frac{3}{10})=\frac{12}{625}$ ### 2. #### $x^2-4xy+4y^2+10x-11=0$圖形為何? #### ans: #### 原式可設為$(ax+by+c)^2-k(bx-ay+d)=0$ #### 可求得$a=1,b=-2,c=1,d=-3,k=4$ #### 推出圖形為一對稱軸在$x-2y+1=0$,頂點交於$2x+y-3=0$,焦距為$\frac{1}{\sqrt{5}}$的拋物線 #### 另解可設$x=cos\theta x-sin\theta y,y=sin\theta x+cos\theta y$並標準化消去xy項,可得一拋物線旋轉一銳角 ### 3. #### 矩陣題 #### ans: #### 照著填 ### 4. #### $\frac{1}{x_1^2}+\frac{1}{x_2^2}+...\frac{1}{x_n^2}=1,x_1...x_n$均為正整數 #### (1)求證n=2無解(2)n=5無解 #### (3)已知n=3無解且$\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{9}+\frac{1}{9}+\frac{1}{36}=1$,求有解之n值 #### ans: #### 前兩小題可由窮舉說明 #### $\frac{1}{4n}=\frac{1}{9n}+\frac{1}{9n}+\frac{1}{36n}$可多出兩個,$\frac{1}{n}=\frac{1}{4n}+\frac{1}{4n}+\frac{1}{4n}+\frac{1}{4n}$可多出三個 #### 可得n=2,3,5以外均有解 ### 5. #### 數列 $a_{1}=\sqrt{12},a_{2}=\sqrt{12+\sqrt{12}}...$ 試證有上界並求極限 #### ans: #### $a_{1}<4$,設$a_{k}<4$成立,則$a_{k+1}=\sqrt{12+a_{k}}<\sqrt{12+4}=4$,極限值為4 ### 6. #### 三角形ABC內部一點P,P位於哪裡時與三頂點連線和最大?最小? #### ans: #### 最小時參考費馬點,最大時參考以下證明[https://www.sohu.com/a/135412480_649577]
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up