# 台大二階筆試-數學考古2018 ## 2018台大電機 ### 1. #### $w=\frac{-1+\sqrt{3}i}{2},w^{86}+w^{87}+...w^{365}=?,(x+yi)^{4}=-2+2\sqrt{3}i,x>0,y>0,x=?,y=?$ #### ans: #### $1+w+w^2=0,$原式=$w^2=\frac{-1-\sqrt{3}i}{2}$ #### $(x+yi)^{4}=(\sqrt{2})^4(cos120^{\circ}+isin120^{\circ})\longrightarrow x=\frac{\sqrt{6}}{2}、y=\frac{\sqrt{2}}{2}$ ### 2. #### $ln \alpha+\alpha-6=0,e^{\beta}+\beta-6=0,\alpha+\beta=?,ln \alpha+e^{\beta}=?$ #### ans: #### $ln \alpha+e^{ln\alpha}=6,\beta+e^{\beta}=6\longrightarrow ln\alpha=\beta$ #### $ln\alpha+\alpha=\alpha+\beta=6,ln \alpha+e^{\beta}=6$ ### 3. #### $2x^2-3x-1=0,$兩根為$cot\alpha、cot\beta,cot(\alpha+\beta)=?$ #### $2sin^2(\alpha+\beta)-3sin(\alpha+\beta)cos(\alpha+\beta)+cos^2(\alpha+\beta)=?$ #### ans: #### $cot\alpha+cot\beta=\frac{sin(\alpha+\beta)}{sin\alpha sin\beta}=\frac{3}{2},cot\alpha cot\beta=\frac{cos\alpha cos\beta}{sin\alpha sin\beta}=\frac{-1}{2}$ #### $cot(\alpha+\beta)=\frac{cos(\alpha+\beta)}{sin(\alpha+\beta)}=\frac{\frac{-1}{2}sin\alpha sin\beta-sin\alpha sin\beta}{\frac{3}{2}sin\alpha sin\beta}=-1$ #### 另一答案為$1+\frac{3}{2}+\frac{1}{2}=3$ ### 4. #### $\overrightarrow{u}=(2,1),\overrightarrow{v}=(-1,2),4x\overrightarrow{u}-\overrightarrow{v}\perp x\overrightarrow{u}+3\overrightarrow{v},x=?$ #### $(k,1),(2,4),(0,2k-4)$共線,k=? #### ans: #### $x=\pm\frac{\sqrt{3}}{2},k=1、5$ ### 5. #### $\left\{\begin{matrix} a_1x+b_1y=c_1\\ a_2x+b_2y=c_2\end{matrix}\right.$恰一解$(\alpha,\beta)$,$\left\{\begin{matrix} a_1x+3b_1y=2c_1\\ a_2x+3b_2y=2c_2\end{matrix}\right.$求其解(以$\alpha、\beta$表示) #### ans: #### $x=2\alpha,y=\frac{2}{3}\beta$ ### 6. #### 染病者0.5%、真陽檢測為陽0.95、真陰檢測為陰0.95,求一人為陽則染病機率為? #### ans: #### $\frac{0.005\times0.95}{0.995\times0.05+0.005\times0.95}=\frac{19}{218}$ ### 7. #### 投硬幣,正面A給B1元,反之亦然,A有6元、B有3元,玩到有人輸光為止,P(n)為A有n元贏所有錢機率,P(0)=?、P(9)=?、P(n),P(n-1),P(n+1)關係式?、求A贏所有錢機率? #### ans: #### $P(0)=0,P(9)=1,P(n)=\frac{1}{2}P(n-1)+\frac{1}{2}P(n+1)$ #### $P(n)=\alpha+\beta n\longrightarrow P(n)=\frac{1}{9}n,P(6)=\frac{2}{3}$