若使用conda安裝,可將CUDA一併下載。 安裝前要先確認安裝版本,python目前版本與PyTorch、CUDA的版本相容、自身電腦可安裝最高版本的CUDA,都要先確認,否則會無法安裝。另外,不建議安裝最高版本,務必安裝已釋出一段時間且穩定的版本。 --- ## 手動下載安裝檔(建議) 到[Link](https://download.pytorch.org/whl/torch_stable.html)下載需要的版本 我使用的版本為 `PyTorch==1.12.0`、`torchvision==0.13.0`、`cuda==11.3`(cu113)、`python==3.10`(cp310) ![](https://hackmd.io/_uploads/rk8F4QUv3.png) 或`PyTorch==1.11.0`、`torchvision==0.12.0`、`cuda==11.3`(cu113)、`python==3.9`(cp39) cu113/torch-1.11.0%2Bcu113-cp39-cp39-win_amd64.whl cu113/torchvision-0.12.0%2Bcu113-cp39-cp39-win_amd64.whl ### 用pip安裝 ``` pip install "torch-1.12.0+cu113-cp310-cp310-win_amd64.whl" pip install "torchvision-0.13.0+cu113-cp310-cp310-win_amd64.whl" ``` ![](https://hackmd.io/_uploads/SJboVQLv3.png) ![](https://hackmd.io/_uploads/BkTpVXUP2.png) --- ## 測試 ``` python import torch torch.cuda.is_available() torch.cuda.get_device_name(0) ``` ![](https://hackmd.io/_uploads/B19LrQID3.png) --- ## Issue ![](https://hackmd.io/_uploads/Bkkt7QIw3.png) --- ## Reference https://pytorch.org/get-started/previous-versions/ https://download.pytorch.org/whl/torch_stable.html https://blog.csdn.net/qq_45956730/article/details/126600028 https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-windows https://medium.com/ching-i/win10-%E5%AE%89%E8%A3%9D-cuda-cudnn-%E6%95%99%E5%AD%B8-c617b3b76deb https://blog.csdn.net/qimo601/article/details/125146818 todo: cuda toolkit https://developer.nvidia.com/cuda-toolkit-archive https://developer.nvidia.com/rdp/cudnn-archive https://stackoverflow.max-everyday.com/2022/08/anaconda-cuda-cudnn-win11/ 安裝 https://www.it145.com/9/191725.html --- curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-11-3_11.3.0-1_amd64.deb curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-libraries-11-3_11.3.0-1_amd64.deb curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-demo-suite-11-3_11.3.58-1_amd64.deb curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-toolkit-11-3_11.3.0-1_amd64.deb curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-runtime-11-3_11.3.0-1_amd64.deb sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub sudo dpkg -i ./cuda-libraries-11-3_11.3.0-1_amd64.deb sudo dpkg -i ./cuda-runtime-11-3_11.3.0-1_amd64.deb sudo dpkg -i ./cuda-toolkit-11-3_11.3.0-1_amd64.deb sudo dpkg -i ./cuda-demo-suite-11-3_11.3.58-1_amd64.deb sudo dpkg -i ./cuda-11-3_11.3.0-1_amd64.deb sudo apt-get update sudo apt-get install ?? curl -O https://download.pytorch.org/whl/cu113/torch-1.12.1%2Bcu113-cp310-cp310-linux_x86_64.whl curl -O https://download.pytorch.org/whl/cu113/torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl pip install "./torch-1.12.1%2Bcu113-cp310-cp310-linux_x86_64.whl" pip install "./torchvision-0.13.0%2Bcu113-cp310-cp310-linux_x86_64.whl"