# GPU&CPU使用情況 ### 觀察GPU使用量 每10秒print >watch -n 10 nvidia-smi Memory-Usage 內存使用量 GPU-Util GPU使用量 > https://blog.csdn.net/autoliuweijie/article/details/53170325 ## Zero volatile GPU-Util but high GPU Memory Usage 參考以下解決方式 >1.https://michaelblogscode.wordpress.com/2017/10/10/reducing-and-profiling-gpu-memory-usage-in-keras-with-tensorflow-backend/ >2.https://blog.csdn.net/qq_35082030/article/details/78186503 ```python ## extra imports to set GPU options import tensorflow as tf from keras import backend as k ################################### # TensorFlow wizardry config = tf.ConfigProto() # Don't pre-allocate memory; allocate as-needed config.gpu_options.allow_growth = True # Only allow a total of half the GPU memory to be allocated config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Create a session with the above options specified. k.tensorflow_backend.set_session(tf.Session(config=config)) ################################### ``` ## 查看CPU 查看使用率 >top > http://blog.xuite.net/zerofirst/blog/147985077-Linux%E6%9F%A5%E7%9C%8BCPU%E5%80%8B%E6%95%B8%2F%E5%A4%9A%E6%A0%B8%2F%E5%A4%9A%E5%9F%B7%E8%A1%8C%E7%B7%92%E7%9A%84%E6%9F%A5%E7%9C%8B ###### tags: `linux`