# infinite recursive claim for on-chain-reward ###### tags: `DeFi` `BadgerDAO` **Definition** $$ Z_{0} = Reward_{Y} * \frac{Circulating_{X} * \frac{r}{MaxBPS}}{TotalSupply_{X}},TotalSupply = Reward + Circulating $$ For `odd` index of i in the series: $$ Z_{i} = Reward_{X} * \frac{Z_{i - 1}}{TotalSupply_{Y}} $$ For `even` index of i in the series: $$ Z_{i} = Reward_{Y} * \frac{Z_{i - 1}}{TotalSupply_{X}} $$ ------------------------------------------------------ **Summation** Let $$ A = \frac{Reward_{X}}{TotalSupply_{Y}}, B = \frac{Reward_{Y}}{TotalSupply_{X}}, A*B = (\frac{Reward_{X}}{TotalSupply_{X}} * \frac{Reward_{Y}}{TotalSupply_{Y}}) \leqslant 1 $$ Having $$ \sum_{i=0}^{\infty}{Z_{i}} = Z_{0} + (Z_{1} + Z_{3} + Z_{5} + ...) + (Z_{2} + Z_{4} + Z_{6} + ...) $$ $$ (Z_{1} + Z_{3} + Z_{5} + ...) = Z_{0} * A + Z_{0} * A * (B * A) + Z_{0} * A * (B * A)^2 + ... $$ $$ (Z_{2} + Z_{4} + Z_{6} + ...) = Z_{0} * (A * B) + Z_{0} * (A * B) * (A * B) + Z_{0} * (A * B) * (A * B)^2 + ... $$ Then $$ \sum_{i=0}^{\infty}{Z_{i}} = Z_{0} + Z_{0} * (\sum_{p=1}^{\infty}A * (B * A)^{p - 1}) + Z_{0} * (\sum_{q=1}^{\infty}A * B * (A*B)^{q - 1}) $$ Reduced to by https://en.wikipedia.org/wiki/Geometric_series#Closed-form_formula $$ RewardsSum_{Y} = Z_{0} + \frac{Z_{0} * A * B}{1 - A * B} $$ $$ RewardsSum_{X} = \frac{Z_{0} * A}{1 - B * A} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up