Try   HackMD

論文分析:Solving the spike sorting problem with Kilosort

摘要:

Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, complicated by the non-stationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To solve the spike sorting problem, we have continuously developed over the past eight years a framework known as Kilosort. This paper describes the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a new version with substantially improved performance due to new clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework which uses densely sampled electrical fields from real experiments to generate non-stationary spike waveforms and realistic noise. We find that nearly all versions of Kilosort outperform other algorithms on a variety of simulated conditions, and Kilosort4 performs best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.

想解決的問題

這篇論文想要解決神經科學中的一個重要但困難的問題,即如何從局部電場的記錄中提取單個神經元的發射時間,這個問題被稱為"spike sorting"。這個問題的複雜性來自於記錄的非靜態性和附近神經元之間電場的緊密重疊。

使用的方法

為了解決spike sorting問題,作者們運用了一個連續八年不斷發展的框架,稱為Kilosort。本文描述了Kilosort不同版本中引入的各種算法步驟。作者們還報告了Kilosort4的開發,這是一個新版本,由於受到基於圖形的方法啟發的新聚類算法的影響,其性能有了顯著的改進。為了測試Kilosort的性能,作者們開發了一個逼真的模擬框架,使用了從真實實驗中獲取的密集採樣的電場,生成非靜態的spike波形和逼真的噪聲。結果顯示,Kilosort的幾乎所有版本在各種模擬條件下都優於其他算法,而Kilosort4在所有情況下表現最佳,可以正確識別出在高漂移條件下振幅低且空間範圍小的神經元。

最後的成果

本論文的最終成果是開發出一個名為Kilosort的框架,可以解決神經科學中的spike sorting問題。經過八年的不斷發展,Kilosort已經引入了各種算法步驟,並且最新版本的Kilosort4通過基於圖形的方法啟發的新聚類算法,顯著提高了性能。在進行逼真的模擬實驗時,Kilosort系列算法在各種情況下的表現都優於其他算法,Kilosort4在所有情況下表現最佳,能夠準確識別具有低振幅和小空間範圍的神經元。

關鍵字

spike sorting, Kilosort, clustering algorithms, graph-based approaches, simulation framework.