Simple Tank === - total mass balance: $\begin{Bmatrix}\text{mass}\\ \text{accumulation}\end{Bmatrix} = \begin{Bmatrix}\text{sum}\\ \text{of mass}\\ \text{inflows}\end{Bmatrix} - \begin{Bmatrix}\text{sum}\\ \text{of mass}\\ \text{outflows}\end{Bmatrix}$ \ $\dfrac{\text dm(t)}{\text dt} = \dot m_\text{in}(t) - \dot m_\text{out}(t) \qquad \qquad m(t)=\rho(t)V(t), \ \dot m(t)=\rho(t)q(t)$ - assume $\rho$ is constant \ $\dfrac{\text dV(t)}{\text dt} = q_\text{in}(t) - q_\text{out}(t)$ - output equation \ $h(t) = V(t)/A \qquad \qquad$ note: $A$ is a constant parameter #### Blender (Tank with two inflows and a dissolved substance) ![](https://i.imgur.com/Srh5LkG.png =300x280) - equation for the total mass balance from the simple tank example holds (note: assumption of constant density might not); there are two inflows though: $\dfrac{\text dm(t)}{\text dt} = \dot m_\text{in,1}(t) + \dot m_\text{in,2}(t) - \dot m_\text{out}(t)$ - component mass balance: $\begin{Bmatrix}\text{component}\\ \text{mass}\\ \text{accumulation}\end{Bmatrix} = \begin{Bmatrix}\text{sum of}\\ \text{component}\\ \text{mass inflows}\end{Bmatrix} - \begin{Bmatrix}\text{sum}\\ \text{of component}\\ \text{mass outflows}\end{Bmatrix}$ \ $\dfrac{\text d\left[c(t)m(t)\right]}{\text dt} = c_\text{in,1}(t)\dot m_\text{in,1}(t) + c_\text{in,2}(t)\dot m_\text{in,2}(t) - c(t)\dot m_\text{out}(t) \quad \ [c(t)]=\dfrac{\text{kg of component}}{\text{kg of solution}}$ \ $m(t)\dfrac{\text dc(t)}{\text dt} + c(t)\underbrace{\dfrac{\text dm(t)}{\text dt}}_{\dot m_\text{in,1}(t) + \dot m_\text{in,2}(t) - \dot m_\text{out}(t)} = c_\text{in,1}(t)\dot m_\text{in,1}(t) + c_\text{in,2}(t)\dot m_\text{in,2}(t) - c(t)\dot m_\text{out}(t)$ \ $m(t)\dfrac{\text dc(t)}{\text dt} + c(t)\left[\dot m_\text{in,1}(t) + \dot m_\text{in,2}(t) - \dot m_\text{out}(t)\right] = c_\text{in,1}(t)\dot m_\text{in,1}(t) + c_\text{in,2}(t)\dot m_\text{in,2}(t) - c(t)\dot m_\text{out}(t)$ - cancel $- c(t)\dot m_\text{out}(t)$ on both sides $m(t)\dfrac{\text dc(t)}{\text dt} = - c(t)\left[\dot m_\text{in,1}(t) + \dot m_\text{in,2}(t)\right] + c_\text{in,1}(t)\dot m_\text{in,1}(t) + c_\text{in,2}(t)\dot m_\text{in,2}(t)$ - complete (nonlinear) model $\dfrac{\text dm(t)}{\text dt} = \dot m_\text{in,1}(t) + \dot m_\text{in,2}(t) - \dot m_\text{out}(t)$ $m(t)\dfrac{\text dc(t)}{\text dt} = - c(t)\left[\dot m_\text{in,1}(t) + \dot m_\text{in,2}(t)\right] + c_\text{in,1}(t)\dot m_\text{in,1}(t) + c_\text{in,2}(t)\dot m_\text{in,2}(t)$ - simplified model (const. total mass $\text dm(t)/\text dt = \dot m_\text{in,1}(t) + \dot m_\text{in,2}(t) - \dot m_\text{out}(t)=0$) - this hold if $\dot m_\text{out}$ manipulated by a controller $m\dfrac{\text dc(t)}{\text dt} = - c(t)\underbrace{\left[\dot m_\text{in,1}(t) + \dot m_\text{in,2}(t)\right]}_{\dot m_\text{out}} + c_\text{in,1}(t)\dot m_\text{in,1}(t) + c_\text{in,2}(t)\dot m_\text{in,2}(t)$ - final simplified model $m\dfrac{\text dc(t)}{\text dt} = - c(t)\dot m_\text{out}(t) + c_\text{in,1}(t)\dot m_\text{in,1}(t) + c_\text{in,2}(t)\dot m_\text{in,2}(t)$ - steady state of a model (full or simplified) $c = \dfrac{c_\text{in,1}\dot m_\text{in,1} + c_\text{in,2}\dot m_\text{in,2}}{\dot m_\text{out}} = \dfrac{c_\text{in,1}\dot m_\text{in,1} + c_\text{in,2}\dot m_\text{in,2}}{\dot m_\text{in,1} + \dot m_\text{in,2}}$ $c = \underbrace{\dfrac{\dot m_\text{in,1}}{\dot m_\text{out}}}_{K_1}c_\text{in,1} + \underbrace{\dfrac{\dot m_\text{in,2}}{\dot m_\text{out}}}_{K_2}c_\text{in,2} = \underbrace{\dfrac{\dot m_\text{in,1}}{\dot m_\text{in,1} + \dot m_\text{in,2}}}_{K_1}c_\text{in,1} + \underbrace{\dfrac{\dot m_\text{in,2}}{\dot m_\text{in,1} + \dot m_\text{in,2}}}_{K_2}c_\text{in,2}$ - finding the time constant of a simplified model $\underbrace{\dfrac{m(t)}{\dot m_\text{out}(t)}}_T\dfrac{\text dc(t)}{\text dt} = - c(t) + \dfrac{\dot m_\text{in,1}(t)}{\dot m_\text{out}(t)}c_\text{in,1}(t) + \dfrac{\dot m_\text{in,2}(t)}{\dot m_\text{out}(t)}c_\text{in,2}(t)$ $G(s) =\dfrac{Y(s)}{U(s)}= \dfrac{K}{Ts+1} \ \to \ Ty'(t) = -y(t) + Ku(t)$ $Y(s)(Ts+1)= KU(s)$ $y(t) + Ty'(t)=Ku(t)$ $Ty'(t) = -y(t) + Ku(t)$ - further simplification ($c_{\text{in},2}(t)=0$, $c_{\text{in}}(t)\equiv c_{\text{in},1}(t)$, $m_{\text{in}}(t)\equiv m_{\text{in},1}(t)$), i.e. we are diluting the first stream by the second one in the blender $\underbrace{\dfrac{m(t)}{\dot m_\text{out}(t)}}_T\dfrac{\text dc(t)}{\text dt} = - c(t) + \underbrace{\dfrac{\dot m_\text{in}(t)}{\dot m_\text{out}(t)}}_{K_{c_\text{in}\to c}}\underbrace{c_\text{in}(t)}_{\text{DV}} = - c(t) + \underbrace{\dfrac{c_\text{in}(t)}{\dot m_\text{out}(t)}}_{K_{\dot m_\text{in}\to c}}\underbrace{\dot m_\text{in}(t)}_{\text{MV}}$ - note $[T]=\text s$ $Ty'(t) = -y(t) + Ku(t)$ $Ty'(0) = -y(0) + Ku(0)$ $y'(0) = K/T$ $y(t) = K (1 - \text e^{-\frac{t}{T}})$ $Y(s)(Ts+1)= KU(s) \to Y(s)(Ts+1)= \dfrac{K}{s}$ $Y(s)= \dfrac{K}{s(Ts+1)} = \dfrac{A}{s} + \dfrac{B}{Ts+1}$ $K = A(Ts+1) + Bs$ $s^0: \ K=A$ $s^1: \ 0=AT+B \to B = -AT = -KT$ $Y(s)= \dfrac{K}{s} + \dfrac{-KT}{Ts+1}= \dfrac{K}{s} + \dfrac{-K}{s+1/T}$ $\mathcal L\{\text e^{-at}\}=\dfrac{1}{s+a}$ $y(t) = K(1-\text e^{-\frac{t}{T}})$ $y(T) = K (1 - \text e^{-\frac{T}{T}}) = K (1-e^{-1}) = K(1-0.3679) = 0.6321K$