# Validation update ## Experiments setting - dataset: celeb_A (male, straight hair) - dataset size: 256 - generative size: 512 - loss function: $MSE(1, \ K_{valid, train} K_{train, train}^{-1}(I-e^{- \eta t K_{train, train}}))$ ## Algorithm Let $x_{train}$ be the training data 1. Random split generative data into $x_{noise}^{valid}$ and $x_{noise}^{train}$ 2. Get kernel matrix: - training set: [$x_{train}, x_{noise}^{train}$] - validating set: $x_{noise}^{valid}$ - $K_{train, train}$: kernel matrix of training set - $K_{valid, train}$: kernel matrix of validating set and training set 4. Update validation set with loss function for $k$ steps. 5. Repeat 1. 2. 3. ## 只 random split 一次,update 直到 converge - k = 100, iteration = 100 ![](https://i.imgur.com/SQ3CeyO.png) - k = 200, iteration = 200 ![](https://i.imgur.com/4oD9U25.png) - k = 400, iteration = 400 ![](https://i.imgur.com/QyYRRl8.png) - k = 800, iteration = 800 ![](https://i.imgur.com/edXS5Ux.png) - k = 1600, iteration = 1600 ![](https://i.imgur.com/43cocYZ.png) - k = 3200, iteration = 3200 ![](https://i.imgur.com/ThlPxfv.png) - 圖像確實會隨著 iteration 越多越往人臉靠近。目前看來,僅 random split 一次,就算是提高 iteration也不能獲得完整的 pattern。 ## 固定 random split 次數, 改動 k-step - random split 次數皆為 500 次 - k = 100, iteration = 50000 ![](https://i.imgur.com/OCI1pxy.png) - k = 200, iteration = 100000 ![](https://i.imgur.com/hsRO9KS.png) - k = 400, iteration = 200000 ![](https://i.imgur.com/jE9fnGk.png) - k = 800, iteration = 400000 ![](https://i.imgur.com/OCc2TMR.png) - 有人臉的形狀,但是是模糊的。目前觀察不出 k 對圖片的影響性。 - 經過測試之後少部分圖像不太有 creativity。但其他圖片太過模糊,很難比較相似性。 - 以 k = 800 為例,左上角圖為生成的人臉,下圖(左上一)與(左上二)重複 ![](https://i.imgur.com/GWc69PW.png)