# 誠品綠園道-臨時工作筆記 ## 1 agx機器上yolor 編譯成功,效率也不錯確認dockerfile可以正常後移植質心追蹤 yolor api 建立成功 待後續編寫docker compose ### 安裝 docker-compose ``` sudo apt-get install -y libffi-dev sudo apt-get install -y python-openssl sudo apt-get install libssl-dev sudo pip3 install docker-compose ``` ### 預設賦予gpu權限 sudo nano /etc/docker/daemon.json ``` { "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] } } } ``` ### 使用 jetson-inference #### 建立 docker ``` git clone https://github.com/dusty-nv/jetson-inference.git # 修改 Dockerfile ARG BASE_IMAGE=nvcr.io/nvidia/l4t-pytorch:r35.1.0-pth1.13-py3 ``` #### 使用 docker-compose ``` jetson_inference: container_name: jetson_inference_agx image: raidavid/jetson_inference_agx build: context: ./jetson-inference dockerfile: Dockerfile restart: always stdin_open: true tty: true ports: - "5125:6858" logging: options: max-size: "10m" max-file: "10" ``` #### 換思路 改在 yolor 中編譯(成功!!!!!!!) ``` apt-get update apt-get install git cmake libpython3-dev python3-numpy git clone --recursive https://github.com/dusty-nv/jetson-inference cd jetson-inference mkdir build cd build cmake ../ make -j$(nproc) make install ldconfig ``` #### 年齡性別 ``` https://github.com/Venus-Solutions/nvidia-jetson-hands-on-training/blob/028829530f147403c2dd3c1d420481275b6fceca/Day%207/age_estimation/age_estimate_jetson_inference.py ``` #### 測試推論速度 ``` No face detected. 0.046926259994506836 have face 0.11062073707580566 0.11894798278808594 0.11177229881286621 0.11629271507263184 0.11476922035217285 0.08691000938415527 0.09487009048461914 0.09502053260803223 ``` #### 改寫 yolor 加入安裝jetson 推論功能 ``` !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ``` ### 建立 docker-compse.yaml 1.centroidtracker: # 輔助 reid 2.saas_yolor: 3.deepface: 進行中 4.deepstream並使用cv2搭配(尚未) ## 2 國美2的deepstream格式轉換進行到Rai-Export-wts image編譯並上傳完成 因為正在訓練所以改到 3090 pull下來中 ### 複製必要檔案 ``` scp rai@192.83.188.36:/autotrain/runs/train/person_22_01_19/weights/best.pt ./ scp rai@192.83.188.36:/autotrain/tmp/person_22_01_19/person_22_01_19.cfg ./ scp rai@192.83.188.36:/autotrain/tmp/person_22_01_19/person_22_01_19.names ./ scp -r /Users/davidyang/Desktop/22_01_30 ubuntu@192.168.50.100:/autotrain/wts/tmpfile python3 gen_wts_yolor.py -w /autotrain/w/tmpfile/person_01_30/best.pt -c /autotrain/w/tmpfile/person_01_30/person_22_01_19.cfg mv person_22_01_19.cfg /DeepStream-Yolo/person_22_01_30/person_22_01_30.cfg mv person_22_01_19.wts /DeepStream-Yolo/person_22_01_30/person_22_01_30.wts ``` ### 轉換 wts(尚未自動化) ``` python3 gen_wts_yolor.py -w /autotrain/runs/train/person_22_01_19/weights/best.pt -c /autotrain/tmp/person_22_01_19/person_22_01_19.cfg mkdir /autotrain/wts/person_22_01_19 mv *.cfg /autotrain/wts/person_22_01_19 mv *.wts /autotrain/wts/person_22_01_19 cp /autotrain/tmp/person_22_01_19/person_22_01_19.names /autotrain/wts/person_22_01_19 ``` ### wts to engine (過程佔用4g記憶體) ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo deepstream-app -c deepstream_app_config.txt mv model_b50_gpu0_fp32.engine /autotrain/wts/person_22_01_19 mv ./nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so /autotrain/wts/person_22_01_19 ``` 轉換成功並且下載到本地端等待更換現場電腦 scp -r /Users/davidyang/Desktop/wts/person_22_01_19 ubuntu@192.168.10.2:/home/ubuntu/kafka/deepstream-6.0/sources/apps/sample_apps/deepstream-occupancy-analytics/config 移植完畢
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up