# Redshift sensitivity :
We have selected the $\nu$ and $\kappa$ for each individual redshift like the table below.
| z | $\nu$ | $\kappa$ |
|----|---|---|
|2.3 | -2.35 | -2.75 |
|2.45 | -2.0 | -2.35 |
|2.6 | -1.90 | -2.4|
They are not terribly different though.
However, We have already shown we get roughly the same estimators both for $M_{DM}$ amd $M_{z=0}$ this way. (Tables below).
This shows we can use the same estimator for the entire of the observed volume, but it doesn't say we can use a single set of ($\nu$ and $\kappa$) and $\delta_F$-$\rho_{DM}$ realtion for all rdshifts. In next session I show what happens if we use same thing for all redshifts.
For $M_{DM}$-$M_{tomo}$
|z | # Watersheds | slope | intercept |
|--|--|--| --|
|2.3| | 0.41+-0.10 | 14.59+-0.05|
|2.4| | 0.39+-0.06 | 14.54+-0.04|
|2.6| | 0.32+-0.05 | 14.67+-0.03|
For $M_{DM}$-$M_{z=0}$:
|z | # Watersheds | slope | intercept |
|--|--|--| --|
|2.3| | 0.668+-0.117 | 13.90+-0.075|
|2.4| | 0.720+-0.090 | 13.76+-0.051|
|2.6| | 0.766+-0.106 | 13.70+-0.067|
## Fixing $\nu=-2.0$, $\kappa=-2.35$ and the $\delta_F$-$\rho_{DM}$ relation :
It turns out the $\delta_F$-vs-$\rho_{DM}$ relation has noticeable redhsift evolution. The table below shows the polynomial coefficients for each redshift.
|z| a$x^2$ | bx | c |
|--|--|--| --|
|2.3 | 18.9 +- 0.7 | 5.7 +- 0.1 | 0.96 +- 0.01 |
|2.4 | 11.5 +- 0.5 | 4.60 +- 0.05 | 0.97 +- 0.01 |
|2.6 | 13.0 +- 0.8 | 4.98 +- 0.06 | 0.99 +- 0.0 |
So, if we assume the relation at z=2.45 holds for all other redshifts, we would underestimate the $M_tomo, raw$ and therefore a larger offset is required in $M_{tomo,raw}$-$M_{tomo}$ relation. The plot below shows that :

After corrcting this offset we would get the same estimators again :
For $M_{DM}$-$M_{tomo}$
|z | # Watersheds | slope | intercept |
|--|--|--| --|
|2.3| | 0.45+-0.10 | 14.62+-0.03|
|2.4| | 0.39+-0.06 | 14.54+-0.04|
|2.6| | 0.34+-0.05 | 14.62+-0.03|
For $M_{DM}$-$M_{z=0}$:
|z | # Watersheds | slope | intercept |
|--|--|--| --|
|2.3| | 0.80+-0.1 | 14.69+-0.06|
|2.4| | 0.72+-0.09 | 13.76+-0.05|
|2.6| | 0.80+-0.09 | 13.72+-0.05|
I should say the scatter the estimators in mass-bins are also not changing.
## Conclusion :
To me, it seems the redshift evolution of the $\delta_F$-$\rho_{DM}$ relation is more important than the evolution of $\nu$ and $\kappa$ with redshift.
I have basically equivalent to each plot on the draft for these two other redshifts on the noebooks [here](https://github.com/mahdiqezlou/LyTomo-Watershed).