# Redshift sensitivity : We have selected the $\nu$ and $\kappa$ for each individual redshift like the table below. | z | $\nu$ | $\kappa$ | |----|---|---| |2.3 | -2.35 | -2.75 | |2.45 | -2.0 | -2.35 | |2.6 | -1.90 | -2.4| They are not terribly different though. However, We have already shown we get roughly the same estimators both for $M_{DM}$ amd $M_{z=0}$ this way. (Tables below). This shows we can use the same estimator for the entire of the observed volume, but it doesn't say we can use a single set of ($\nu$ and $\kappa$) and $\delta_F$-$\rho_{DM}$ realtion for all rdshifts. In next session I show what happens if we use same thing for all redshifts. For $M_{DM}$-$M_{tomo}$ |z | # Watersheds | slope | intercept | |--|--|--| --| |2.3| | 0.41+-0.10 | 14.59+-0.05| |2.4| | 0.39+-0.06 | 14.54+-0.04| |2.6| | 0.32+-0.05 | 14.67+-0.03| For $M_{DM}$-$M_{z=0}$: |z | # Watersheds | slope | intercept | |--|--|--| --| |2.3| | 0.668+-0.117 | 13.90+-0.075| |2.4| | 0.720+-0.090 | 13.76+-0.051| |2.6| | 0.766+-0.106 | 13.70+-0.067| ## Fixing $\nu=-2.0$, $\kappa=-2.35$ and the $\delta_F$-$\rho_{DM}$ relation : It turns out the $\delta_F$-vs-$\rho_{DM}$ relation has noticeable redhsift evolution. The table below shows the polynomial coefficients for each redshift. |z| a$x^2$ | bx | c | |--|--|--| --| |2.3 | 18.9 +- 0.7 | 5.7 +- 0.1 | 0.96 +- 0.01 | |2.4 | 11.5 +- 0.5 | 4.60 +- 0.05 | 0.97 +- 0.01 | |2.6 | 13.0 +- 0.8 | 4.98 +- 0.06 | 0.99 +- 0.0 | So, if we assume the relation at z=2.45 holds for all other redshifts, we would underestimate the $M_tomo, raw$ and therefore a larger offset is required in $M_{tomo,raw}$-$M_{tomo}$ relation. The plot below shows that : ![](https://i.imgur.com/TNNZjoN.png) After corrcting this offset we would get the same estimators again : For $M_{DM}$-$M_{tomo}$ |z | # Watersheds | slope | intercept | |--|--|--| --| |2.3| | 0.45+-0.10 | 14.62+-0.03| |2.4| | 0.39+-0.06 | 14.54+-0.04| |2.6| | 0.34+-0.05 | 14.62+-0.03| For $M_{DM}$-$M_{z=0}$: |z | # Watersheds | slope | intercept | |--|--|--| --| |2.3| | 0.80+-0.1 | 14.69+-0.06| |2.4| | 0.72+-0.09 | 13.76+-0.05| |2.6| | 0.80+-0.09 | 13.72+-0.05| I should say the scatter the estimators in mass-bins are also not changing. ## Conclusion : To me, it seems the redshift evolution of the $\delta_F$-$\rho_{DM}$ relation is more important than the evolution of $\nu$ and $\kappa$ with redshift. I have basically equivalent to each plot on the draft for these two other redshifts on the noebooks [here](https://github.com/mahdiqezlou/LyTomo-Watershed).