# Интегралы дз ### С разделяющимися переменными ![](https://i.imgur.com/bWyYBlV.png) 1) $$ ydx + (1 + x^2)dy = 0\\ ydx = -(1 + x^2)dy\\ \frac{dx}{1 + x^2} = -\frac{dy}{y}\\ \int\frac{dx}{1 + x^2} = \int-\frac{dy}{y}\\ \frac{ln|1 + x^2|}{2} = -ln||-ln|| $$ 2) $$ y` = \tan{x}\tan{y}\\ \frac{dy}{dx} = \tan{x}\tan{y}\\ \frac{dy}{tan(y)} = dxtan(x)\\ \int\frac{dy}{tan(y)} = \int{dxtan(x)}\\ ln(siny) = -ln(cosx) + C $$ ### Последний слайд ![](https://i.imgur.com/4c0xOEl.png) 1) $$ y` = \frac{y}{x} -1\\ \frac{dy}{dx} = \frac{y}{x} -1\\ dy = (\frac{y}{x} -1)dx\\ u = \frac{y}{x};\ y = ux;\ dy = udx + xdu\\ udx + xdu = (u - 1)dx\\ udx + xdu = udx - dx\\ xdu = -dx\\ du = -\frac{dx}{x}\\ \int{du} = \int{-\frac{1}{x}}dx\\ u = = -ln|x| + C\\ \frac{y}{x} = -ln|x| + C\\ y = x(C - ln|x|) $$ 2) $$ y` = \frac{y}{x} + e^{\frac{y}{x}}\\ dy = dx(\frac{y}{x} + e^{\frac{y}{x}})\\ u = \frac{y}{x};\ y = ux;\ dy = udx + xdu\\ udx + xdu = dx(e^u + u)\\ udx + xdu = e^udx + udx\\ xdu = e^udx\\ \frac{du}{e^u} = \frac{dx}{x}\\ \int\frac{du}{e^u} = \int\frac{dx}{x}\\ \frac{1}{e^u} = ln(x) + C\\ \frac{1}{e^\frac{y}{x}} = ln(x) + C $$ 4) $$ y` = \frac{x - 2y + 3}{x - 2y + 1}\\ z = x - 2y + 1\\ y = (-z + x + 1)/2. y` = (-z + 1)/2\\ \frac{-z + 1}{2} = \frac{z + 2}{z}\\ а дальше хз $$