# CSR Experiments - Vorschlag von Thomas: - feasibility von Pareto Dijsktra (Laufzeit) - warum feasible (Pareto-Front Daten) - Vergleich gegen selfish routing - Mehrere Datensaetze - selected OD-pairs - common sections ## Data sets | Name | Description | Variables | | -------- | -------- | -------- | | **kc-sections** | shared sections of shortest paths of OD-pairs | $k$, timeframe, base data | | **single-pairs** | multiplied OD-pairs | $d$ (number of drivers) | ## Experiment strategy - Measurements - Runtime (cpu-time) - Quality () - Pareto-Front size - **kc-sections** - base data: - approx. user equilibrium dijkstra - $k$: 100 - 500, step_size = 10 - $k$-common strings longer than 50 nodes ## Scenario list | dataset | $k$ (#drivers) | origin node | destination node | | - | - | - | - | For each row a plans.xml can be generated. ## Result csv dataset $\in$ (kcs(9|12|17)|ttp(9|12|17)) strategy $\in$ (1D-SAP, UD-SAP, ShortestPath) | dataset | $k$ (#drivers) | origin node | destination node | actual $k$ | psychmod | strategy | cpu-time | score | # node visits | # canditdates | # edges in original route | mean Pareto set size | sum Pareto set size | Mean DP size | Sum DP size | Found alternative (true=0/false=1) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | DP size references to the size of the fields of the Array A in the DP. If the strategy is not nodisjoint, these values are 0. Unclear: Also test strategy = CD-SAP? Problem: Most of the OD-pairs won't work ## File structure input: - in.csv - sane_berlin.xml - kcs - origin_destination_k.xml - origin_destination_k.xml - origin_destination_k.xml - ttp - origin_destination_k.xml - origin_destination_k.xml - origin_destination_k.xml output: - kcs - origin_destination_k_routed_strategy_psych.xml - ttp - origin_destination_k_routed_strategy_psych.xml - stats.csv ## Paper Plots - Runtime (grouped bar plots) - by Dataset (color) - by Strategy (x-dimension) - Runtime for $k$ (scatter plot) - by $k$ (x-dimension) - by Strategy (color) - by Dataset (two plots) - Quality (grouped bar plots) - by Dataset (color) - by Strategy (also Dijkstra-1 and Dijkstra-All) (x-dimension) - Quaility boost by $k$ -> relative improvement to DijkstraAll (histogram) (if interesting) - by Dataset (two plots) - by Strategy (CD, 1D, UD) - Density on RouteLength vs. $k$ plane (2D-Histogram) Psychologisches Modell? -> ggf. auf user_equilibrium beschraenken ## Hinweise zum Text * Tomtom skalierter Graph in den Fliesstext mit aufnehmen, damit das Setting klar ist * Bogen schlagen zu Section 2 * Hardwarebeschreibung / Implementierungsbeschreibung * textueller Hinweis auf die andere psychologischen Modelle ## Feedback Louise + Thomase ### Plots - Score-Kurven der Strategien über k - Runtimes der Strategien über Distanz (Buckets oder einzelne Punkte) - Runtime über Pareto-Fronten, wenn ähnlich zu anderem Runtime - Plots jeweils nach Psychmod ### Text in den Draft soll auch das intelligente Insert and Dominate, Multi-criteria A*, schon Detailliert (aber schnell beschreiben) Implementationdetails + Evaluation