---
title: "Design Foundational Data Engineering Observability - Shuhsi Lin"
tags: PyConTW2025, 2025-organize, 2025-共筆
---
# Design Foundational Data Engineering Observability - Shuhsi Lin
{%hackmd L_RLmFdeSD--CldirtUhCw %}
<iframe src=https://app.sli.do/event/rnWFcQGCk16ePjNXW7fsQc height=450 width=100%></iframe>
:::success
本演講提供 AI 翻譯字幕及摘要,請點選這裡前往 >> [PyCon Taiwan AI Notebook](https://pycontw.connyaku.app/?room=aVOkUKV4oXw42GbzXgY2)
AI translation subtitles and summaries are available for this talk. Click here to access >> [PyCon Taiwan AI Notebook](https://pycontw.connyaku.app/?room=aVOkUKV4oXw42GbzXgY2)
:::
> Collaborative writing start from below
> 從這裡開始共筆
### Start with Basic
- Stories in Smart Pizza & AI
- Common Data Engineering Challenges
- Complex data pipeline
- From Monitoring to Observability
- Monitoring Focus
- WHERE the issue is
- WHEN & WHAT
- Observability Focus
- WHY it happened
- WHY & HOW
- Observability and Data Observability
- 5 Pillars of Data Observability
- Freshness、Volume、Distribution、Schema、Lineage
- Key Focus Areas of Data Observability
- Infrastructure
- Hardware & services runing pipelines
-
### How to DO
- Data Observability Design Patterns
- Flow Interruption Detector
- Meta Data 的收集是重要的
- Skew Detector
- 異常流量發生時要被監控
- 用 comparison window
- Lag Detector-Monitoring Latency
- MAX & P90/P95
- SLA (Service Level Agreement)
- Dataset Tracker (Data lineage )
- Fine-Grained Tracker
- Data Quality Design Pattern
- Quality Enforcement
- AWAP (Audit-Write-Audit-Pulish)
- 避免有問題資料被儲存
- Schema Consistency
- Schema Versioning
- Schema Migrator
- The Evolution of Data Observability
### Reference
- [Data Engineering Desian Patterns](https://www.oreilly.com/library/view/data-engineering-design/9781098165826/)
-
[Slide 投影片](https://speakerdeck.com/sucitw/design-foundational-data-engineering-observability)
Below is the part that speaker updated the talk/tutorial after speech
講者於演講後有更新或勘誤投影片的部份