--- tags: Source --- # 3.1. BWCorresponding.R """ bw vs feature count plot Based on the corresponding data. TODO: - check xdata$sample_group in shell mode """ library(xcms) library(CMSITools) library(tidyverse) library(stringi) library(StatTools) register(bpstart(MulticoreParam(12))) source('/tmp/src/getFilesMAX.R') args <- commandArgs(trailingOnly = TRUE) filename_in <- args[1] filepath_in <- args[2] filename_out <- args[3] filepath_out <- args[4] nfeatures <- c() for (bw in c(seq(0.4,2.6,by=0.2), seq(3,5,by=0.5), seq(5,10,by=2))){ # RT aligned data xdata <- readRDS(file=paste(filepath_in, filename_in, "_bw", bw, "_algn.rds", sep = "")) pdp <- PeakDensityParam(sampleGroups = xdata$sample_group, minFraction = 0.95, bw = bw, binSize = 0.924) xdata <- groupChromPeaks(xdata, param = pdp) #saveRDS(xdata, file=paste(filepath_out, filename_out, "_bw", bw, "_corr.rds", sep = "")) f <- featureValues(xdata) nf <- nrow(f) nfeatures <- c(nfeatures, nf) print(paste("bw=", bw, " nf=", nf)) rm(xdata) } bw <- c(seq(0.4,2.6,by=0.2), seq(3,5,by=0.5), seq(5,10,by=2)) pdf("bw_nfeature.pdf") plot(bw,nfeatures, main="NEG, number of features vs bw", ylab= "Number of feature") dev.off()