# Linear Algebra hw3 ## 11 ![圖片](https://hackmd.io/_uploads/SJUXreszA.png) ### a consider two 2d matrix $A=\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$ and $B=\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$, $det(A+B)=4, det(A)=det(B)=1$, $\therefore det(A+B)\neq det(A)+det(B)$ ### b consider A is nonsingular, A can be perform as a series of elementary matrix be multiplied, $\therefore A=E, E = \{E_nE_{n-1}\cdots E_1\}, det(A)=det(E)$, since $det(EB)=det(E)det(B)$, we have $det(AB)=det(EB)=det(E)det(B)=det(A)det(B)$ A is singular, AB is also singular, therefore we have $det(AB)=0=det(A)det(B)$ ### c by b. equation above, $det(AB)=det(A)det(B)$, since det(A), det(B)$\in R$, $det(A)det(B)=det(B)det(A)$, therefore, we have $det(AB)=det(A)det(B)=det(B)det(A)=det(BA)$ ## 2. ![圖片](https://hackmd.io/_uploads/BJeXJ-jzR.png) ### a. $$A=\begin{bmatrix} 2 & 1 & 2 & 2 \\ -3 & 3 & 1 & 3 \\ 2 & 1 & -1 & -4 \\ 1 & -3 & 2 & 0 \\ \end{bmatrix}$$ $a_2=a_2+\frac{3}{2}a_1$ $a_3=a_3-a_1$ $a_4=a_4-\frac{1}{2}a_1$ $$A=\begin{bmatrix} 2 & 1 & 2 & 2 \\ 0 & \frac{9}{2} & 4 & 6 \\ 0 & 0 & -3 & -6 \\ 0 & -\frac{7}{2} & 1 & -1 \\ \end{bmatrix}$$ $a_4=a_4+\frac{7}{9}a_2+\frac{1}{27}a_3$ $$A=\begin{bmatrix} 2 & 1 & 2 & 2 \\ 0 & \frac{9}{2} & 4 & 6 \\ 0 & 0 & -3 & -6 \\ 0 & 0 & 0 & \frac{31}{9} \\ \end{bmatrix}$$ $det(A)=2\cdot \frac{9}{2}\cdot-3\cdot-\frac{31}{9}=-93$ ### b the first det is exchange twice so det is $det(A)$ second one is adding a row to another one so is also $det(A)$ so ans is 2 * det(A) = -186 ## 18 ![圖片](https://hackmd.io/_uploads/Hke43bjM0.png) ### a $det(E)=det(I_k)det(B)=det(B)$ ### b $det(F)=det(A)det(I_{n-k})=det(A)$ ### c $det(C)=det(A)det(B)$ ![圖片](https://hackmd.io/_uploads/HkenUaWiMC.png) ### a $$ A=\begin{bmatrix} 2 & 3 \\ 8 & -6 \end{bmatrix} $$ $x_1=\frac{det(A_1)}{det(A)}=\frac{-18}{-36}=2$ $x_2=\frac{det(A_2)}{det(A)}=\frac{-12}{-36}=-3$ ### b $$ A=\begin{bmatrix} 6 & 3 \\ 5 & 7 \end{bmatrix} $$ $x_1=\frac{det(A_1)}{det(A)}=\frac{-1}{27}$ $x_2=\frac{det(A_2)}{det(A)}=\frac{47}{27}$ ### c $$ A=\begin{bmatrix} 2 & -2 & 3 \\ 1 & 2 & 3 \\ -2 & 4 &1 \end{bmatrix} $$ $x_1=\frac{det(A_1)}{det(A)}=\frac{228}{114}=2$ $x_2=\frac{det(A_2)}{det(A)}=\frac{0}{114}=0$ $x_3=\frac{det(A_3)}{det(A)}=\frac{-1026}{114}=9$ ### d $$ A=\begin{bmatrix} 4 & 0 & -2 \\ 7 & 7 & 2 \\ 3 & -2 &1 \end{bmatrix} $$ $x_1=\frac{det(A_1)}{det(A)}=\frac{0}{18}=0$ $x_2=\frac{det(A_2)}{det(A)}=\frac{-16}{18}=-\frac{8}{9}$ $x_3=\frac{det(A_3)}{det(A)}=\frac{60}{18}=\frac{10}{3}$ ### e ![圖片](https://hackmd.io/_uploads/BJSaQMiz0.png) $$ A=\begin{bmatrix} -1 & 2 & 1 \\ 2 & 1 & -2 & 1 \\ 3 & 3 & 1 & 0 \\ 0 & 2 & 1 & -1 \end{bmatrix} $$ $x_1=\frac{det(A_1)}{det(A)}=\frac{-16}{32}=-2$ $x_2=\frac{det(A_2)}{det(A)}=\frac{72}{32}=\frac{9}{4}$ $x_3=\frac{det(A_3)}{det(A)}=\frac{24}{32}=\frac{3}{4}$ $x_4 =\frac{det(A_4)}{det(A)}=\frac{104}{32}=\frac{13}{4}$ ### 4 ![圖片](https://hackmd.io/_uploads/rkDABGiz0.png) $$ A=\begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 1 & 2 \end{bmatrix} $$ $x_1=\frac{det(A_1)}{det(A)}=\frac{0}{2}=0$ $x_2=\frac{det(A_2)}{det(A)}=\frac{2}{2}=1$ $x_3=\frac{det(A_3)}{det(A)}=\frac{-1}{2}$ Ans: $\begin{bmatrix}0 \\ 1 \\ -\frac{1}{2}\end{bmatrix}$