###### tags: `Advanced Calculus` # 數學歸納法的練習 Let $$f(x) = \left\{ \begin{array}{ll} \frac{1}{e^{\frac{1}{x}}} & if\; x > 0; \\ 0 & if\; x \leq 0.\end{array} \right. $$ Show that for each $$n=0, 1, 2, 3 ,\dots, $$ there is a polynomial $$P_n (x)$$ such that $$ f^{\left(n\right)}(x) = \left\{ \begin{array}{ll} P_n (\frac{1}{x})\frac{1}{e^{\frac{1}{x}}} & if\; x > 0; \\ 0 & if\; x \leq 0.\end{array} \right. $$ Does $f$ equal its Maclaurin series?