Machine Learning Notes
===
---
- [README](https://hackmd.io/@pipibear/SyoyR5CVR)
---
Ch1: Introduction
---
- [1.1 What is Machine Learning?](https://hackmd.io/@pipibear/Bk5-l-VNA)
- [1.2 Examples of Machine Learning Applications](https://hackmd.io/@pipibear/SJWE2r44C)
- [1.3 Notes](https://hackmd.io/@pipibear/Sk-HaHE4R)
---
Ch2: Supervised Learning
---
- [2.1 Learning a Class from Examples](https://hackmd.io/@pipibear/HJHdW-E40)
- [2.2 Vapnik-Chervonenkis Dimension](https://hackmd.io/@pipibear/Sy1E6rEV0)
- [2.3 Probably Approximately Correct Learning](https://hackmd.io/@pipibear/SyFf18ENC)
- [2.4 Noise](https://hackmd.io/@pipibear/HJUFk84NR)
- [2.5 Learning Multiple Classes](https://hackmd.io/@pipibear/BkLSgLE40)
- [2.6 Regression](https://hackmd.io/@pipibear/rJhgG8NNA)
- [2.7 Model Selection and Generalization](https://hackmd.io/@pipibear/S14QwU4VC)
- [2.8 Dimensions of a Supervised Machine Learning Algorithm](https://hackmd.io/@pipibear/SyV3cUVER)
- [2.9 Notes](https://hackmd.io/@pipibear/ryVMlD4ER)
---
Ch3: Bayesian Decision Theory
---
- [3.1 Introduction](https://hackmd.io/@pipibear/Bk7k4zV4R)
- [3.2 Classification](https://hackmd.io/@pipibear/SJMJ7ZVER)
- [3.3 Losses and Risks](https://hackmd.io/@pipibear/H1Mx7f4NC)
- [3.4 Discriminant Functions](https://hackmd.io/@pipibear/B1pu4naNR)
- [3.5 Association Rules](https://hackmd.io/@pipibear/SkGwYTREA)
- [3.6 Notes](https://hackmd.io/@pipibear/Sylv1eer0)
---
Ch4: Parametric Methods
---
- [4.1 Introduction](https://hackmd.io/@pipibear/S1oHBgxSA)
- [4.2 Maximum Likelihood Estimation](https://hackmd.io/@pipibear/rk9DvfgSC)
- [4.3 Evaluating an Estimator: Bias and Variance](https://hackmd.io/@pipibear/BkS_CMuS0)
- [4.4 The Bayes' Estimator](https://hackmd.io/@pipibear/rJh3_TsLA)
- [4.5 Parametric Classification](https://hackmd.io/@pipibear/BJQLCMAvA)
- [4.6 Regression](https://hackmd.io/@pipibear/HyGiwbGO0)
- [4.7 Tuning Model Complexity: Bias / Variance Dilemma](https://hackmd.io/@pipibear/Sy7Fs2VOA)
- [4.8 Model Selection Procedures](https://hackmd.io/@pipibear/BJ5s6ZIO0)
- [補充:Maximum Likelihood Estimation](https://hackmd.io/@pipibear/SJtqpvSBR)
- [補充:Bayesian Estimation](https://hackmd.io/@pipibear/Sy4XW138A)
- [補充:More Bayesian Concepts ](https://hackmd.io/@pipibear/HJKNTZZDA)
- [補充:large coefficients for high-order polynomials](https://hackmd.io/@pipibear/BkyBvBjOR)
---
Ch5: Multivariate Methods
---
- [5.1 Multivariate Data](https://hackmd.io/@pipibear/S1SaAiPuR)
- [5.2 Parameter Estimation](https://hackmd.io/@pipibear/H1TRwnw_C)
- [5.3 Estimation of Missing Values](https://hackmd.io/@pipibear/S1zKAoj_C)
- [5.4 Multivariate Normal Distribution](https://hackmd.io/@pipibear/SkgL8C3OA)
- [5.5 Multivariate Classification](https://hackmd.io/@pipibear/ByBQVbqKR)
- [5.6 Tuning Complexity](https://hackmd.io/@pipibear/BJPGvnx5R)
- [5.7 Discrete Features](https://hackmd.io/@pipibear/BkuoayG90)
- [5.8 Multivariate Regression](https://hackmd.io/@pipibear/SklL4EmcR)
- [補充:Exploratory Data Analysis](https://hackmd.io/@pipibear/rkrGpFxF0)
- [補充:multivariate outliers](https://hackmd.io/@pipibear/rkalaWUtR)
- [補充:Basic Multivariate Normal Theory](https://hackmd.io/@pipibear/HJlnB8wt0)
---
Ch6: Dimensionality Reduction
---
- [6.1 Introduction](https://hackmd.io/@pipibear/H1z-0mPqR)
- [6.2 Subset Selection](https://hackmd.io/@pipibear/r1VW1Id50)
- [6.3 Principal Component Analysis](https://hackmd.io/@pipibear/BJOHi5YqC)
- [6.4 Feature Embedding]()
- [6.5 Factor Analysis]()
---
Ch11: Multilayer Perceptrons
---
- [11.1 Introduction](https://hackmd.io/@pipibear/HJOKQbNNC)
- [11.2 The Perceptron](https://hackmd.io/@pipibear/rJ1Uu_E4R)
---
Appendix A: Probability
---
- [A.1 Elements of Probability](https://hackmd.io/@pipibear/BJFRH-EEC)
- [A.1.1 Axioms of Probability](https://hackmd.io/@pipibear/H16ShcBEC)
- [A.1.2 Conditional Probability](https://hackmd.io/@pipibear/Byyhh9BN0)
- [A.2 Random Variables](https://hackmd.io/@pipibear/r1S3_f4N0)
- [A.2.1 Probability Distribution and Density Functions](https://hackmd.io/@pipibear/HkSF_cS40)
- [A.2.2 Joint Distribution and Density Functions](https://hackmd.io/@pipibear/H1JnK9HEC)
- [A.2.3 Conditional Distributions](https://hackmd.io/@pipibear/B1HZ5cBNC)
- [A.2.4 Bayes' Rule](https://hackmd.io/@pipibear/BJh859SE0)
- [A.2.5 Expectation](https://hackmd.io/@pipibear/SJJT95r4R)
- [A.2.6 Variance](https://hackmd.io/@pipibear/HyvHi9rEA)
- [A.2.7 Weak Law of Large Numbers](https://hackmd.io/@pipibear/BkLfyTHNC)
- [補充:sample](https://hackmd.io/@pipibear/Hyn0QQ_H0)
- [補充:Bessel's correction](https://hackmd.io/@pipibear/HyIO-uWUA)
- [補充: Joint distribution functions](https://hackmd.io/@pipibear/rkrvIg2I0)
- [補充:Conditional Distributions](https://hackmd.io/@pipibear/HJB-y57wR)
- [A.3 Special Random Variables](https://hackmd.io/@pipibear/BJFj-iq40)
- [A.3.1 Bernoulli Distribution](https://hackmd.io/@pipibear/rkGGbs9VA)
- [A.3.2 Binomial Distribution](https://hackmd.io/@pipibear/SkWtX39NR)
- [A.3.3 Multinomial Distribution](https://hackmd.io/@pipibear/rkFapp94R)
- [A.3.4 Uniform Distribution](https://hackmd.io/@pipibear/Hk3uPRcV0)
- [A.3.5 Normal(Gaussian) Distribution](https://hackmd.io/@pipibear/rkq0ZkoEC)
- [A.3.6 Chi-Square Distribution](https://hackmd.io/@pipibear/HJx5_jz80)
- [A.3.7 t distribution](https://hackmd.io/@pipibear/HkU6rYqLC)
- [補充:CLT]()
- [補充:moment generating function (mgf)](https://hackmd.io/@pipibear/HyWZSx2NR)
- [補充:mgf technique](https://hackmd.io/@pipibear/Bk1JuX2VA)
- [補充:joint moment generating functions](https://hackmd.io/@pipibear/Hk7Uz2VF0)
- [補充:random functions associated with normal distributions](https://hackmd.io/@pipibear/rkYLmUhVR)
- [補充:Poisson Distribution](https://hackmd.io/@pipibear/SkrUqjGIA)
- [補充:Exponential Distribution](https://hackmd.io/@pipibear/ByC1pvIU0)
- [補充:Gamma Distribution](https://hackmd.io/@pipibear/r1agDjvUC)
- [補充:Chi-Square Distribution](https://hackmd.io/@pipibear/SJYdTbdIC)
{"title":"ML 筆記","description":"Textbook: Ethem Alpaydin-Introduction to Machine Learning-The MIT Press (2014)","contributors":"[{\"id\":\"40e32ca8-e8f2-4a47-a75e-5b1f2571091a\",\"add\":58139,\"del\":51951}]"}