# [WRITE-UP] Cryptohack - Symmetric_How Are Work ## 1. Keyed Permutations ![](https://i.imgur.com/C1vqkuj.png) **flag:** crypto{bijection} ## 2. Resisting Bruteforce ![](https://i.imgur.com/MxeCgSs.png) **flag:** crypto{biclique} ## 3.Structure of AES matrix.py ```python= def bytes2matrix(text): """ Converts a 16-byte array into a 4x4 matrix. """ return [list(text[i:i+4]) for i in range(0, len(text), 4)] def matrix2bytes(matrix): """ Converts a 4x4 matrix into a 16-byte array. """ ???? matrix = [ [99, 114, 121, 112], [116, 111, 123, 105], [110, 109, 97, 116], [114, 105, 120, 125], ] print(matrix2bytes(matrix)) ``` Nhiệm vụ của mình là chuyển từ ma trận trạng thái sang dang bytes. solve.py ```python= matrix = [ [99, 114, 121, 112], [116, 111, 123, 105], [110, 109, 97, 116], [114, 105, 120, 125], ] def matrixtobytes(matrix): s ='' for i in matrix: for j in i: s+=chr(j) return s print(matrixtobytes(matrix)) ``` **flag**: crypto{inmatrix} ## 4.Round Keys source.py ```pyhton= state = [ [206, 243, 61, 34], [171, 11, 93, 31], [16, 200, 91, 108], [150, 3, 194, 51], ] round_key = [ [173, 129, 68, 82], [223, 100, 38, 109], [32, 189, 53, 8], [253, 48, 187, 78], ] #def add_round_key(s, k): ??? #print(add_round_key(state, round_key)) ``` Mình sẽ hoàn thiện nốt hàm add_round_key ở phần này. Nói chi tiết hơn thì add_round_key là một hàm chức năng của của AES, với nhiệm vụ là xor ma trận trạng thái với khóa vòng. ```python= from pwn import * state = [ [206, 243, 61, 34], [171, 11, 93, 31], [16, 200, 91, 108], [150, 3, 194, 51], ] round_key = [ [173, 129, 68, 82], [223, 100, 38, 109], [32, 189, 53, 8], [253, 48, 187, 78], ] def matrixtostring(matric): s ='' for i in matric: for j in i: s+=chr(j) return s s1 = matrixtostring(state) s2 = matrixtostring(round_key) print(xor(s1,s2)) ``` **flag:** crypto{r0undk3y} ## 5.Confusion through Substitution source.py ```python= s_box = ( 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16, ) inv_s_box = ( 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D, ) state = [ [251, 64, 182, 81], [146, 168, 33, 80], [199, 159, 195, 24], [64, 80, 182, 255], ] # def sub_bytes(s, sbox=s_box): # ??? # print(sub_bytes(state, sbox=inv_s_box)) ``` Mình sẽ gửi ma trận trang thái thông qua inv_sbox và chuyển về bytes để get flag. ```python= s_box = ( 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16, ) inv_s_box = ( 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D, ) state = [ [251, 64, 182, 81], [146, 168, 33, 80], [199, 159, 195, 24], [64, 80, 182, 255], ] def sub_bytes(s, sbox=s_box): plain = b'' for i in s: for j in i: a = sbox[j] plain += bytes([a]) return plain print(sub_bytes(state, sbox=inv_s_box)) ``` **flag:** crypto{l1n34rly} ## 6.Diffusion through Permutation source.py ```python= def shift_rows(s): s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1] s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2] s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3] def inv_shift_rows(s): ??? # learned from http://cs.ucsb.edu/~koc/cs178/projects/JT/aes.c xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1) def mix_single_column(a): # see Sec 4.1.2 in The Design of Rijndael t = a[0] ^ a[1] ^ a[2] ^ a[3] u = a[0] a[0] ^= t ^ xtime(a[0] ^ a[1]) a[1] ^= t ^ xtime(a[1] ^ a[2]) a[2] ^= t ^ xtime(a[2] ^ a[3]) a[3] ^= t ^ xtime(a[3] ^ u) def mix_columns(s): for i in range(4): mix_single_column(s[i]) def inv_mix_columns(s): # see Sec 4.1.3 in The Design of Rijndael for i in range(4): u = xtime(xtime(s[i][0] ^ s[i][2])) v = xtime(xtime(s[i][1] ^ s[i][3])) s[i][0] ^= u s[i][1] ^= v s[i][2] ^= u s[i][3] ^= v mix_columns(s) state = [ [108, 106, 71, 86], [96, 62, 38, 72], [42, 184, 92, 209], [94, 79, 8, 54], ] ``` Nhìn vào source thì mình lấy là người ta đã cho ma trận trạng thái sau khi thực hiện qua 2 hàm Shiftrow và Mixcolumn. Nhiệm vụ của mình là thực hiên ngược lại, nghĩa là cho ma trận trạng thái thực thi 2 hàm Inv_MixColumns và Inv_ShiftRows solve.py ```python= def shift_rows(s): s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1] s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2] s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3] def inv_shift_rows(s): s[1][1], s[2][1], s[3][1], s[0][1]= s[0][1], s[1][1], s[2][1], s[3][1] s[2][2], s[3][2], s[0][2], s[1][2]= s[0][2], s[1][2], s[2][2], s[3][2] s[3][3], s[0][3], s[1][3], s[2][3]= s[0][3], s[1][3], s[2][3], s[3][3] return s # learned from http://cs.ucsb.edu/~koc/cs178/projects/JT/aes.c xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1) def mix_single_column(a): # see Sec 4.1.2 in The Design of Rijndael t = a[0] ^ a[1] ^ a[2] ^ a[3] u = a[0] a[0] ^= t ^ xtime(a[0] ^ a[1]) a[1] ^= t ^ xtime(a[1] ^ a[2]) a[2] ^= t ^ xtime(a[2] ^ a[3]) a[3] ^= t ^ xtime(a[3] ^ u) def mix_columns(s): for i in range(4): mix_single_column(s[i]) def inv_mix_columns(s): # see Sec 4.1.3 in The Design of Rijndael for i in range(4): u = xtime(xtime(s[i][0] ^ s[i][2])) v = xtime(xtime(s[i][1] ^ s[i][3])) s[i][0] ^= u s[i][1] ^= v s[i][2] ^= u s[i][3] ^= v mix_columns(s) return s # them ham def matrixtostring(matric): s ='' for i in matric: for j in i: s+=chr(j) return s state = [ [108, 106, 71, 86], [96, 62, 38, 72], [42, 184, 92, 209], [94, 79, 8, 54], ] x = inv_mix_columns(state) y =inv_shift_rows(x) print(matrixtostring(y)) ``` **flag:** crypto{d1ffUs3R} ## 7. Bringing It All Together source.py ```python= N_ROUNDS = 10 key = b'\xc3,\\\xa6\xb5\x80^\x0c\xdb\x8d\xa5z*\xb6\xfe\\' ciphertext = b'\xd1O\x14j\xa4+O\xb6\xa1\xc4\x08B)\x8f\x12\xdd' def expand_key(master_key): """ Expands and returns a list of key matrices for the given master_key. """ # Round constants https://en.wikipedia.org/wiki/AES_key_schedule#Round_constants r_con = ( 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A, 0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A, 0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39, ) # Initialize round keys with raw key material. key_columns = bytes2matrix(master_key) iteration_size = len(master_key) // 4 # Each iteration has exactly as many columns as the key material. i = 1 while len(key_columns) < (N_ROUNDS + 1) * 4: # Copy previous word. word = list(key_columns[-1]) # Perform schedule_core once every "row". if len(key_columns) % iteration_size == 0: # Circular shift. word.append(word.pop(0)) # Map to S-BOX. word = [s_box[b] for b in word] # XOR with first byte of R-CON, since the others bytes of R-CON are 0. word[0] ^= r_con[i] i += 1 elif len(master_key) == 32 and len(key_columns) % iteration_size == 4: # Run word through S-box in the fourth iteration when using a # 256-bit key. word = [s_box[b] for b in word] # XOR with equivalent word from previous iteration. word = bytes(i^j for i, j in zip(word, key_columns[-iteration_size])) key_columns.append(word) # Group key words in 4x4 byte matrices. return [key_columns[4*i : 4*(i+1)] for i in range(len(key_columns) // 4)] def decrypt(key, ciphertext): round_keys = expand_key(key) # Remember to start from the last round key and work backwards through them when decrypting # Convert ciphertext to state matrix # Initial add round key step for i in range(N_ROUNDS - 1, 0, -1): pass # Do round # Run final round (skips the InvMixColumns step) # Convert state matrix to plaintext return plaintext # print(decrypt(key, ciphertext)) ``` Bài này cho sẵn ciphertext và key, giờ thì mình chỉ cần hoàn thiện phần decrypt là ok. solve.py ```python= from pwn import * N_ROUNDS = 10 key = b'\xc3,\\\xa6\xb5\x80^\x0c\xdb\x8d\xa5z*\xb6\xfe\\' ciphertext = b'\xd1O\x14j\xa4+O\xb6\xa1\xc4\x08B)\x8f\x12\xdd' s_box = ( 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16, ) inv_s_box = ( 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D, ) def bytes2matrix(text): """ Converts a 16-byte array into a 4x4 matrix. """ return [list(text[i:i+4]) for i in range(0, len(text), 4)] def matrix2bytes(matrix): """ Converts a 4x4 matrix into a 16-byte array. """ return bytes(sum(matrix, [])) def add_round_key(s, k): return xor(s, k) def sub_bytes(s, sbox): return list(map(lambda x: sbox[x], sum(s, []))) def shift_rows(s): s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1] s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2] s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3] def inv_shift_rows(s): s[1][1], s[2][1], s[3][1], s[0][1] = s[0][1], s[1][1], s[2][1], s[3][1] s[2][2], s[3][2], s[0][2], s[1][2] = s[0][2], s[1][2], s[2][2], s[3][2] s[3][3], s[0][3], s[1][3], s[2][3] = s[0][3], s[1][3], s[2][3], s[3][3] # learned from http://cs.ucsb.edu/~koc/cs178/projects/JT/aes.c def xtime(a): return (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1) def mix_single_column(a): # see Sec 4.1.2 in The Design of Rijndael t = a[0] ^ a[1] ^ a[2] ^ a[3] u = a[0] a[0] ^= t ^ xtime(a[0] ^ a[1]) a[1] ^= t ^ xtime(a[1] ^ a[2]) a[2] ^= t ^ xtime(a[2] ^ a[3]) a[3] ^= t ^ xtime(a[3] ^ u) def mix_columns(s): for i in range(4): mix_single_column(s[i]) def inv_mix_columns(s): # see Sec 4.1.3 in The Design of Rijndael for i in range(4): u = xtime(xtime(s[i][0] ^ s[i][2])) v = xtime(xtime(s[i][1] ^ s[i][3])) s[i][0] ^= u s[i][1] ^= v s[i][2] ^= u s[i][3] ^= v mix_columns(s) def expand_key(master_key): """ Expands and returns a list of key matrices for the given master_key. """ # Round constants https://en.wikipedia.org/wiki/AES_key_schedule#Round_constants r_con = ( 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A, 0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A, 0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39, ) # Initialize round keys with raw key material. key_columns = bytes2matrix(master_key) iteration_size = len(master_key) // 4 # Each iteration has exactly as many columns as the key material. i = 1 while len(key_columns) < (N_ROUNDS + 1) * 4: # Copy previous word. word = list(key_columns[-1]) # Perform schedule_core once every "row". if len(key_columns) % iteration_size == 0: # Circular shift. word.append(word.pop(0)) # Map to S-BOX. word = [s_box[b] for b in word] # XOR with first byte of R-CON, since the others bytes of R-CON are 0. word[0] ^= r_con[i] i += 1 elif len(master_key) == 32 and len(key_columns) % iteration_size == 4: # Run word through S-box in the fourth iteration when using a # 256-bit key. word = [s_box[b] for b in word] # XOR with equivalent word from previous iteration. word = bytes(i^j for i, j in zip(word, key_columns[-iteration_size])) key_columns.append(word) # Group key words in 4x4 byte matrices. return [key_columns[4*i : 4*(i+1)] for i in range(len(key_columns) // 4)] def decrypt(key, ciphertext): round_keys = expand_key(key) # Remember to start from the last round key and work backwards through them when decrypting # Convert ciphertext to state matrix state = bytes2matrix(ciphertext) # Initial add round key step state = bytes2matrix(add_round_key(state, round_keys[10])) for i in range(N_ROUNDS - 1, 0, -1): inv_shift_rows(state) state = bytes2matrix(sub_bytes(state, inv_s_box)) state = bytes2matrix(add_round_key(state, round_keys[i])) inv_mix_columns(state) pass # Do round # Run final round (skips the InvMixColumns step) inv_shift_rows(state) state = bytes2matrix(sub_bytes(state, inv_s_box)) state = bytes2matrix(add_round_key(state, round_keys[0])) # Convert state matrix to plaintext return matrix2bytes(state) print(decrypt(key, ciphertext)) ``` **flag:** crypto{MYAES128}