## 碰撞 ---- :::info 1. 動量守恆 $$m_1v_1+m_2v_2 = m_1v^{'}_1+m_2v^{'}_2$$ 3. 能量守恆 $$\frac{1}{2}m_1v^{2}_1+\frac{1}{2}m_2v^{2}_2 = \frac{1}{2}m_1v^{'^{2}}_1+\frac{1}{2}m_2v^{'^{2}}_2$$ ::: --- ## 理想狀態下兩物體碰撞次數會接近 $pi=3.14159...$ ---- ![](https://i.imgur.com/rn3RJbX.png) ---- ### 證明: ![](https://i.imgur.com/hrDxbI2.png) * 將能量守恆公式圖形伸縮成一個圓 $$ \frac{1}{2}m_1v^{2}_1+\frac{1}{2}m_2v^{2}_2 = const.\\ let\;x = \sqrt{m_1} \cdot v_1\\ let\;y = \sqrt{m_2} \cdot v_2\\ $$ * 以上述方式重新定義的$x,\;y$所構成的平面 * $\frac{1}{2}m_1v^{2}_1+\frac{1}{2}m_2v^{2}_2 = const.$ 為一圓 * 同時 $m_1v_1+m_2v_2 =const.$ 可寫成 $\sqrt{m_1}x+\sqrt{m_1}y =const.$ - $\sqrt{m_1}x+\sqrt{m_1}y =const.$ 在$x,\;y$ 平面上斜率為 $-\sqrt{\frac{m_1}{m_2}}$ * 由 $\sqrt{m_1}x+\sqrt{m_1}y =const.$ 和 鉛直線可將圓周切成若干等分 - 鉛直線的來源為假設 $v_2$ 碰到牆壁時直接變為 $-v_2$ (牆質量視為無限大) ![](https://i.imgur.com/SMY6X04.png) * 每個等分的圓周圓心角相等且角度為$2\theta$ (討論 $\sqrt{m_1}:\sqrt{m_2}$ 為整數比的情況) * 且圓上等分的圓周數量剛好等於碰撞次數 - 此處證明省略 * 因此我們可知$2\theta \cdot N = 2\pi$, 所求 $N$ 即為碰撞次數 * $N = \frac{\pi}{\theta}$ * 經由觀察幾何性質後發現 $\theta = arctan(\sqrt{\frac{m_1}{m_2}})$ * 且 $\sqrt{\frac{m_1}{m_2}}$ 極小 * 所以 $\theta = \sqrt{\frac{m_1}{m_2}}$ * 整理後 $$ N = \frac{\pi}{\theta}\\\;\\ N = \frac{\pi}{arctan(\sqrt{\frac{m_1}{m_2}})}\\\;\\ N = \frac{\pi}{\sqrt{\frac{m_1}{m_2}}}\\\;\\ N = \sqrt{\frac{m_2}{m_1}}\pi $$ ### 將 $m_2 = 1000000,\;m_1=1$ 帶入 $N = \sqrt{\frac{m_2}{m_1}}\pi$ ### $N = 1000*3.14159... = 3141$ ### 得證 <iframe width="560" height="315" src="https://www.youtube.com/embed/jsYwFizhncE?si=kVyV8eBJM7sGGxJo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
{"metaMigratedAt":"2023-06-15T21:52:26.178Z","metaMigratedFrom":"Content","title":"碰撞","breaks":true,"description":"動量守恆m_1v_1+m_2v_2 = m_1v^{'}_1+m_2v^{'}_2","contributors":"[{\"id\":\"60f87ada-c8bc-4f5d-9b91-2a0d3103440d\",\"add\":2745,\"del\":1127}]"}
    199 views