## 碰撞
----
:::info
1. 動量守恆
$$m_1v_1+m_2v_2 = m_1v^{'}_1+m_2v^{'}_2$$
3. 能量守恆
$$\frac{1}{2}m_1v^{2}_1+\frac{1}{2}m_2v^{2}_2 = \frac{1}{2}m_1v^{'^{2}}_1+\frac{1}{2}m_2v^{'^{2}}_2$$
:::
---
## 理想狀態下兩物體碰撞次數會接近 $pi=3.14159...$
----

----
### 證明:

* 將能量守恆公式圖形伸縮成一個圓
$$
\frac{1}{2}m_1v^{2}_1+\frac{1}{2}m_2v^{2}_2 = const.\\
let\;x = \sqrt{m_1} \cdot v_1\\
let\;y = \sqrt{m_2} \cdot v_2\\
$$
* 以上述方式重新定義的$x,\;y$所構成的平面
* $\frac{1}{2}m_1v^{2}_1+\frac{1}{2}m_2v^{2}_2 = const.$ 為一圓
* 同時 $m_1v_1+m_2v_2 =const.$ 可寫成 $\sqrt{m_1}x+\sqrt{m_1}y =const.$
- $\sqrt{m_1}x+\sqrt{m_1}y =const.$ 在$x,\;y$ 平面上斜率為 $-\sqrt{\frac{m_1}{m_2}}$
* 由 $\sqrt{m_1}x+\sqrt{m_1}y =const.$ 和 鉛直線可將圓周切成若干等分
- 鉛直線的來源為假設 $v_2$ 碰到牆壁時直接變為 $-v_2$ (牆質量視為無限大)

* 每個等分的圓周圓心角相等且角度為$2\theta$ (討論 $\sqrt{m_1}:\sqrt{m_2}$ 為整數比的情況)
* 且圓上等分的圓周數量剛好等於碰撞次數
- 此處證明省略
* 因此我們可知$2\theta \cdot N = 2\pi$, 所求 $N$ 即為碰撞次數
* $N = \frac{\pi}{\theta}$
* 經由觀察幾何性質後發現 $\theta = arctan(\sqrt{\frac{m_1}{m_2}})$
* 且 $\sqrt{\frac{m_1}{m_2}}$ 極小
* 所以 $\theta = \sqrt{\frac{m_1}{m_2}}$
* 整理後
$$
N = \frac{\pi}{\theta}\\\;\\
N = \frac{\pi}{arctan(\sqrt{\frac{m_1}{m_2}})}\\\;\\
N = \frac{\pi}{\sqrt{\frac{m_1}{m_2}}}\\\;\\
N = \sqrt{\frac{m_2}{m_1}}\pi
$$
### 將 $m_2 = 1000000,\;m_1=1$ 帶入 $N = \sqrt{\frac{m_2}{m_1}}\pi$
### $N = 1000*3.14159... = 3141$
### 得證
<iframe width="560" height="315" src="https://www.youtube.com/embed/jsYwFizhncE?si=kVyV8eBJM7sGGxJo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
{"metaMigratedAt":"2023-06-15T21:52:26.178Z","metaMigratedFrom":"Content","title":"碰撞","breaks":true,"description":"動量守恆m_1v_1+m_2v_2 = m_1v^{'}_1+m_2v^{'}_2","contributors":"[{\"id\":\"60f87ada-c8bc-4f5d-9b91-2a0d3103440d\",\"add\":2745,\"del\":1127}]"}