# discrete 7-4 等價關係 ## partition A is a set $A_i \in A$ $A_i\cap A_j = \varnothing$ $A_i\cup A_j\cup A_k..=A$ ## equivalence $x \in A, x\in A_i,[x]=A_i$ Verify reflexive, symmetric, and transitive ### ex if A={1,2,3,4,5} R={(1,1),(2,2),(2,3),(3,2),(3,3),(4,4),(4,5),(5,4),(5,5)} [1]={1} [2]=[3]={2,3} [4]=[5]={4,5} A=$[1]\cup [2]\cup [4]$ ## R $\iff$ Partition 等價關係,會觀察到如果是等價關係的話,在集合中的每個元素都是相等的 R -> Partition R <- Partition one to one ### ex A={1,2,3,4,5,6},How many equivalence relation b. How many of the equivalence relations in part (a) satisfy 1, 2∈[4]? a.$\sum\limits_{i=1}^6{s(6,i)}=203$ b.$\sum\limits_{i=1}^4{s(4,i)}=15$ discrete 5-3 # stirling numbers of the second kind 解決一個大集合分成多個非空子集合的方法,或是一對一對應的方法數 s(m,n) =這個大集合有m個元素,要分n組 ![](https://www.statisticshowto.com/wp-content/uploads/2017/10/image2.png) $s(m,n) = \frac{1}{n!}\sum\limits_{i = 0}^n{(-1)^iC_{i}^{n}(n-i)^m}$