# discrete 8-1 ๆๅฎนๅ็ $S_0=๐$ $S_1=[๐(๐_1 )+๐(๐_2 )+๐(๐_3 )+โฆ+๐(๐_๐ก )]$ $S_2=[๐(๐_1 ๐_2 )+๐(๐_1 ๐_3 )+โฆ+๐(๐_1 ๐_๐ก )+๐(๐_2 ๐_3 )+๐(๐_2 ๐_4 )+โฆ+๐(๐_{(๐กโ1)} ๐_๐ก )]$ ## $\varphi$ # discete 8-2 <!-- $s(m,n) = \frac{1}{n!}\sum\limits_{x = 0}^n{(-1)^iC^{n}_{i}(n-i)^m}$ --> $E_m = S_m -C^{m+1}_1S_{m+1}+C^{m+2}_2S_{m+2}-...+(-1)^{t-m}C^t_{t-m}S_t$ $E_2=S_2-C^3_1S_3+C^4_2S_4$ $L_m=S_m-C^m_{m-1}S_{m+1}+C^{m+1}_{m-1}S_{m+2}-...+(-1)^{t-m}C^{t-1}_{m-1}S_t$ $L_2 = S_2-C^2_1S_3+C^3_1S_4$ E means exactly L means at least  <!-- For example, In (a)how many ways can one distribute ten distinct prizes among four students with exactly two students getting nothing? Transform to exactly two students getting prizes? $S_0=4^{10}$ๅ จ้จ็ฆฎ็ฉๅ้ ๆ ๆณ $S_1=C^4_12^{10}-1$ๆๅ็ตฆๆไธไบบ็ๆ ๆณ๏ผๆๅ็ตฆ $S_2 = C^4_2(2^{10}-2)$ <!-- $S_3 = C^4_33^{10}-3$ --> <!-- $2^{10}-2$ๆๅๅ็ฆฎ็ฉๅ็ตฆๅ ฉๅไบบๆธๆๅๅ้ฝ่ขซไธไบบ็จๆฟ็ๆ ๆณใ --> <!-- $E_2=S_2$ --> <!-- (b)How many ways have at least two students getting nothing? convert to at exactly two students and exactly one student getting prizes ? --> <!-- $E_2+E1=S_2+S_1-C^2_1S$ --> --> # discrete8-3 Derangement ๅฐฑๆฏ้กไผผnๅไบบไบคๆ็ฆฎ็ฉ๏ผไธ่ฆๆฟๅฐ่ชๅทฑ็๏ผๆๅนพ็จฎๅ้ ๆนๆณ๏ผๅ ไพๅฆ10ไบบ๏ผ่ฆๅพๅฐๆๆไบบ้ฝๆฒๆฟๅฐ่ชๅทฑ็๏ผๆไปฅๆฏๆๅฎนๅ็๏ผ็ถๅพไน10!ๆๅๅไธๅ็ไบบ | ๆ ๆณ\่็ขผ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |:---------------------:|:---:| --- | --- | --- | --- | --- | --- | --- | --- |:---:| | 1ๅไบบๆฟๅฐไบบๆฟๅฐ้่ฆ็ | 1X | 3 | 7 | 8 | 9 | 10 | 4 | 6 | 2 | 5 | | 2ๅไบบๆฟๅฐไบบๆฟๅฐ้่ฆ็ | 1X | 2X | 7 | 8 | 9 | 10 | 4 | 6 | 3 | 5 | $d_{10}$=$N(\bar c_1\bar c_2...\bar c_{10})=$$10!-C^{10}_19!+C^9_28!...C^{10}_{10}0!$ ๅ $e^{-1}=\sum^\limits\infty_{n=0}\frac{(-1)^n}{n!}=1-1+\frac{1}{2!}-\frac{1}{3!}....$ $d_{10}$=$N(\bar c_1\bar c_2...\bar c_{10})=$$10!-C^{10}_19!+C^9_28!...C^{10}_{10}0!$ =$10!(1-1+\frac{1}{2!}-\frac{1}{3!}....)\doteq 10!*e^{-1}$ ๅๅ ็บๆฏๅไบบไธไธๆจฃ๏ผๆไปฅ็ฏไพ้ก็ฎๆฏ $10!*10!*e^{-1}$ ๅฆๆ้ก็ฎๆนๆๆ10ๅๆ ผๅญ๏ผ่ฃก้ขๆพ10ๅไธไธๆจฃ็ๆฑ่ฅฟ๏ผ็ถๅพๅๆฟๅบไพ้ๆฐๅ้ ๏ผไฝๆฏไธ่ฝ่ท็ฌฌไธ่ผชๆพไธๆจฃ็ๆฑ่ฅฟ๏ผๅ ็บๆ ผๅญ้ฝไธๆจฃ๏ผ้ๆจฃๅฐฑ$10!*e^{-1}$ๅฐฑๅฅฝ ## refference [Discrete Math II - 8.6.4 Apply the Principle of Inclusion Exclusion: Derangements](https://www.youtube.com/watch?v=u44Y5FDeTRM)
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up