# discrete 8-1 ๆŽ’ๅฎนๅŽŸ็† $S_0=๐‘$ $S_1=[๐‘(๐‘_1 )+๐‘(๐‘_2 )+๐‘(๐‘_3 )+โ€ฆ+๐‘(๐‘_๐‘ก )]$ $S_2=[๐‘(๐‘_1 ๐‘_2 )+๐‘(๐‘_1 ๐‘_3 )+โ€ฆ+๐‘(๐‘_1 ๐‘_๐‘ก )+๐‘(๐‘_2 ๐‘_3 )+๐‘(๐‘_2 ๐‘_4 )+โ€ฆ+๐‘(๐‘_{(๐‘กโˆ’1)} ๐‘_๐‘ก )]$ ## $\varphi$ # discete 8-2 <!-- $s(m,n) = \frac{1}{n!}\sum\limits_{x = 0}^n{(-1)^iC^{n}_{i}(n-i)^m}$ --> $E_m = S_m -C^{m+1}_1S_{m+1}+C^{m+2}_2S_{m+2}-...+(-1)^{t-m}C^t_{t-m}S_t$ $E_2=S_2-C^3_1S_3+C^4_2S_4$ $L_m=S_m-C^m_{m-1}S_{m+1}+C^{m+1}_{m-1}S_{m+2}-...+(-1)^{t-m}C^{t-1}_{m-1}S_t$ $L_2 = S_2-C^2_1S_3+C^3_1S_4$ E means exactly L means at least ![](https://i.imgur.com/XmcNaWz.png) <!-- For example, In (a)how many ways can one distribute ten distinct prizes among four students with exactly two students getting nothing? Transform to exactly two students getting prizes? $S_0=4^{10}$ๅ…จ้ƒจ็ฆฎ็‰ฉๅˆ†้…ๆƒ…ๆณ $S_1=C^4_12^{10}-1$ๆœ‰ๅˆ†็ตฆๆŸไธ€ไบบ็š„ๆƒ…ๆณ๏ผŒๆœ‰ๅˆ†็ตฆ $S_2 = C^4_2(2^{10}-2)$ <!-- $S_3 = C^4_33^{10}-3$ --> <!-- $2^{10}-2$ๆŒ‡ๅๅ€‹็ฆฎ็‰ฉๅˆ†็ตฆๅ…ฉๅ€‹ไบบๆธ›ๆމๅๅ€‹้ƒฝ่ขซไธ€ไบบ็จๆ‹ฟ็š„ๆƒ…ๆณใ€‚ --> <!-- $E_2=S_2$ --> <!-- (b)How many ways have at least two students getting nothing? convert to at exactly two students and exactly one student getting prizes ? --> <!-- $E_2+E1=S_2+S_1-C^2_1S$ --> --> # discrete8-3 Derangement ๅฐฑๆ˜ฏ้กžไผผnๅ€‹ไบบไบคๆ›็ฆฎ็‰ฉ๏ผŒไธ่ฆๆ‹ฟๅˆฐ่‡ชๅทฑ็š„๏ผŒๆœ‰ๅนพ็จฎๅˆ†้…ๆ–นๆณ•๏ผŒๅ…ˆไพ‹ๅฆ‚10ไบบ๏ผŒ่ฆๅพ—ๅˆฐๆ‰€ๆœ‰ไบบ้ƒฝๆฒ’ๆ‹ฟๅˆฐ่‡ชๅทฑ็š„๏ผŒๆ‰€ไปฅๆ˜ฏๆŽ’ๅฎนๅŽŸ็†๏ผŒ็„ถๅพŒไน˜10!ๆœ‰ๅๅ€‹ไธๅŒ็š„ไบบ | ๆƒ…ๆณ\่™Ÿ็ขผ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |:---------------------:|:---:| --- | --- | --- | --- | --- | --- | --- | --- |:---:| | 1ๅ€‹ไบบๆ‹ฟๅˆฐไบบๆ‹ฟๅˆฐ้‡่ฆ†็š„ | 1X | 3 | 7 | 8 | 9 | 10 | 4 | 6 | 2 | 5 | | 2ๅ€‹ไบบๆ‹ฟๅˆฐไบบๆ‹ฟๅˆฐ้‡่ฆ†็š„ | 1X | 2X | 7 | 8 | 9 | 10 | 4 | 6 | 3 | 5 | $d_{10}$=$N(\bar c_1\bar c_2...\bar c_{10})=$$10!-C^{10}_19!+C^9_28!...C^{10}_{10}0!$ ๅˆ $e^{-1}=\sum^\limits\infty_{n=0}\frac{(-1)^n}{n!}=1-1+\frac{1}{2!}-\frac{1}{3!}....$ $d_{10}$=$N(\bar c_1\bar c_2...\bar c_{10})=$$10!-C^{10}_19!+C^9_28!...C^{10}_{10}0!$ =$10!(1-1+\frac{1}{2!}-\frac{1}{3!}....)\doteq 10!*e^{-1}$ ๅˆๅ› ็‚บๆฏๅ€‹ไบบไธไธ€ๆจฃ๏ผŒๆ‰€ไปฅ็ฏ„ไพ‹้กŒ็›ฎๆ˜ฏ $10!*10!*e^{-1}$ ๅฆ‚ๆžœ้กŒ็›ฎๆ”นๆˆๆœ‰10ๅ€‹ๆ ผๅญ๏ผŒ่ฃก้ขๆ”พ10ๅ€‹ไธไธ€ๆจฃ็š„ๆฑ่ฅฟ๏ผŒ็„ถๅพŒๅ†ๆ‹ฟๅ‡บไพ†้‡ๆ–ฐๅˆ†้…๏ผŒไฝ†ๆ˜ฏไธ่ƒฝ่ทŸ็ฌฌไธ€่ผชๆ”พไธ€ๆจฃ็š„ๆฑ่ฅฟ๏ผŒๅ› ็‚บๆ ผๅญ้ƒฝไธ€ๆจฃ๏ผŒ้€™ๆจฃๅฐฑ$10!*e^{-1}$ๅฐฑๅฅฝ ## refference [Discrete Math II - 8.6.4 Apply the Principle of Inclusion Exclusion: Derangements](https://www.youtube.com/watch?v=u44Y5FDeTRM)