# discrete 7.1 relation ## relation R is relation on A R $\subseteq$ AxA, if a,b$\in$A,(a,b)$\in$R, called aRb $R_1*R_2$ = $R_1。R_2$ is like f(g(x)) $R*R = R^2$ is like $f(f(x))$ $R = {(1,1),(1,2),(2,3),(3,3),(3,4)}$ $RR = {(1,f(1)),(1,f(2))....}$ $RR = {(1,1),(1,2),(1,3),(2,3),(2,4),(3,3),(3,4)}$ [explain](https://youtu.be/aEcAh-lcsgY) ## reflexive 反射性 set A, x$\in$A (x,x)$\in R$ $\forall x \in Z, x \le x$Rexflexive (1,1),(2,2),(3,3) ## symmetric 對稱性 if (𝑥, 𝑦)∈ℜ⟹(𝑦, 𝑥)∈ℜ for all 𝑥, 𝑦∈ 𝑎,𝑏∈𝐴,[(𝑎, 𝑏)or(𝑏,𝑎) $\notin$ ℜ]⟹𝑎$\ne$𝑏. (1,2),(2,1),(1,3),(3,1) (1,1)(2,2),(3,3) 1 x ## transitive 遞移性 all 𝑥, 𝑦,𝑧∈𝐴, (𝑥, 𝑦),(𝑦,𝑧)∈ℜ⟹(𝑥, 𝑧)∈ℜ. (1,2),(2,3),(1,3) or 1<2, 2<3,可推 1<3,so3$\nless$ operator x-y = even (2,4)(4,6)() ## antisymetric 反對稱性 antisymmetric if, for all 𝑎,𝑏∈𝐴,[(𝑎, 𝑏),(𝑏,𝑎)∈ℜ]⟹𝑎$\ne$𝑏. (1,1)(2,3)(3,3) (1,1)(2,2),(3,3) operator $\le$ ## partial ordering if $R$ have reflexive, transitive, antisymetric $(a,b) \in R, a\le b$ # reference [relation graph](https://math24.net/properties-relations.html)