# discrete 7-3 赫斯圖 ```graphviz digraph LR { // rankdir=LR; 1 -> 2 2 -> 4 1 -> 4 1 -> 3 } ``` hasse diagram ## Verify partial ordering if $R$ have reflexive, transitive, antisymetric ```graphviz digraph LR { // rankdir=LR; 1 -> 2 2 -> 4 1 -> 3 } ``` 作業7 ```graphviz digraph LR { // rankdir=LR; 3 -> 2 3 -> 1 1 -> 4 } ``` least upper bound (lub) greatest lower bound (glb) $E_1$ B={{1}{2}} glb = $\varnothing$ lub = {1,2} $E_2$ B={{1}{1,2},{1,3},{1,2,3}} glb = {1} lub = {1,2,3} ![](https://i.imgur.com/NHd8VJF.png) 只適用在$p^{e_1}q^1$ 從上排序到下,一直取upper bound,就會很像一直取+號,+號要比-號多。 從上排序到下,一直取lower bound,就會很像一直取-號,-號要比+號多。 所以所有排序方法數就是1-5的爬樓梯與括號匹配問題 n=$e_1+1$ $\frac{1}{n+1}C^{2n}_n$ (a) 24 = $2^3*3$, ans =$\frac{1}{4+1}C^{2*4}_4$=14